
STEpUP OA discovery
analysis plan
v1.0, 29/07/2022

Introduction 2

Quality control process 2

Data analysis plan 3
Overview of analysis approach 3
Primary analysis: Synovial fluid endotypes in OA 4

Sub-analysis 1.1: Unsupervised clustering 4
Sub-analysis 1.2: Identifying characteristic proteins of clusters 6
Sub-analysis 1.3: Bioinformatic characterisation of clusters 7
Sub-analysis 1.4: Clinical characteristics of endotypes 9
Sub-analysis 1.5: Correlation of technical confounders with endotypes 11

Secondary analysis: Synovial proteomics of OA clinical features 11
Sub-analysis 2.1: Finding SF correlates of clinical features 11
Sub-analysis 2.2: Bioinformatic characterisation of clinical features 12

Network analysis: Co-expression and regulation of synovial fluid proteins in OA
and injury 13

Sub-analysis 3.1: Co-expression analysis 13
Sub-analysis 3.2: Investigating drivers of synovial protein co-expression 14

Appendix 1: Data releases associated with this data analysis plan 16
discovery_somascan_1: Proteomic quantification, normalization, batch
correction and QC 16
discovery_QApheno_1: Sample and patient characteristics used in quality
control 17
discovery_DAPpheno_1: Core clinical phenotype data, excluding pain 18
discovery_DAPpheno_2: Core pain phenotype data 19

Appendix 2: Descriptive statistics for the clinical data 21
QA variables 21
Age of sample (no missing data) 21
Demographic variables 25
Radiographic variables 28



Pain variables 30

Appendix 3: Power calculations 35

Appendix 4: Lay summary of the analysis plan 38

Introduction
This document outlines the plan for the analysis of the STEpUP OA discovery cohort. The
dataset for this analysis consists of:

1. SomaScan data on a total of 1045 synovial fluid samples, split across two tranches
and 22 plates. This includes baseline samples from the knee joints of osteoarthritis
(OA, N=719) and joint injury (N=218) patients, with N=64 follow-up samples from
later visits (for 61 total patients), as well as with small numbers of inflammatory
arthritis (N=5) and healthy control (N=37) samples, along with two samples with
missing diagnosis information. A breakdown of these samples by cohort, by sample
type and by tranche are summarized in the following tables.

Sample Type Breakdown

Tranche Baseline OA Baseline Injury Repeated samples Healthy control Inflammatory
arthritis control

OA Injury

Tranche1 257 174 0 0 2 0

Tranche2 462 44 36 28 35 5

Tranche
1&2

719 218 36 28 37 5

2. A basic clinical dataset. All samples have basic demographics (age, sex, cohort
number). The majority of patients also have pain data (WOMAC for OA, KOOS for
joint injury, or where this is not available a knee-specific VAS/NRS or Paindetect
VAS) and many have a measure of radiographic disease severity (e.g.
Kellgren-Lawrence scores) available. We also have data available on confounders
(BMI and smoking history) for a subset of samples.

Details of the datasets and fields that are available for this data analysis are given in
Appendix 1. Descriptive statistics for each disease group and cohort are given in Appendix 2.

The primary analysis set for this analysis plan will consist of the baseline OA and injury
samples. Baseline samples are defined as a) the earliest biological sample for each participant
(this is typically the baseline visit), that b) has a disease group and SIN assigned in the
clinical database.



Quality control process
Normalization and quality assessment of the SomaScan data will be carried out as described
in the STEpUP OA QA Report v2.0. In summary, there are two proteomic data releases
associated with this analysis plan:

A. The primary dataset, which consists of batch-corrected relative concentration data
(corrected using ComBat to remove the effects of plate and a further identified
technical-variable-associated bimodal signal identified on the PCA analysis)

B. A secondary dataset, consisting of non-batch-corrected relative concentration data,
which is used for robustness analyses.

These two datasets represent two different approaches to dealing with technical variation.
The primary dataset, A, is less heavily filtered and thus contains more proteins (5944), and
has technical variation removed via batch-correction on each protein. The secondary dataset
is more heavily filtered, including fewer proteins (4734), and may include residual effects of
technical variation, but has not undergone a more dramatic transformation due to
batch-correction. Note that each dataset has first undergone standard normalization (including
removal of background signal, plate scaling and calibration using plasma calibrators), as
established during the past tranche 1 QA analysis.

Samples and proteins are filtered out based on performance metrics (as described in the QA
report), as well as filtering down to only human proteins, and removing all control proteins
and SOMAmers.

The QA process was used to generate an imputed blood grade (a measure of blood
contamination in each sample) for all samples, based on blood-specific protein biomarkers.
After further testing we found that multiple markers did not add significant accuracy to the
imputation, so “imputed” blood staining grade will simply be the log concentration of a
single marker of haemoglobin (HBA1.HBB.4915.64). In all cases below where we correct for
blood staining, we will also correct for haemoglobin concentration as a separate robustness
analysis.

Data analysis plan

Overview of analysis approach
The analysis plan below is broken down into three sections: a primary analysis, a secondary
analysis, and a tertiary network analysis. The analyses are organised around the major
questions that they intend to answer.These analyses overlap, and in some cases outputs of the
secondary or tertiary analyses will be used to address questions in the primary analysis.

The primary analysis is designed to answer the key consortium question “Are there multiple
synovial fluid molecular endotypes in OA?”. The sub-analyses within this section aim to
answer the question using unsupervised clustering and provide a bioinformatic
characterisation of the endotypes/clusters discovered.

The secondary analysis is designed to build a reference set of proteins and pathways that are
associated with clinical parameters of OA and joint injury in synovial fluid. This is
independent of the primary aim and will ensure that the STEpUP OA consortium members
and the wider community can make maximum use of the data.



The network analysis is designed to study the co-expression of proteins in synovial fluid in
different disease groups. The aim of this analysis is to investigate the extent of protein
co-expression in synovial fluid, to describe the functional characteristics of these groups of
co-expression proteins, and to assess how these differ across different groups of patients. This
analysis provides important context for the findings of the primary and secondary analyses,
by placing discovered proteins in the wider context of protein co-expression and other protein
networks.

Each analysis is broken down into sub-analyses. In the analysis plan below we give the
questions that each sub-analysis is designed to answer, the output that we will generate to
answer these questions, and a description of the analysis approach that we will take. The
secondary sub-analyses 2.1 and 2.2 use a very similar methodology to primary sub-analyses
1.2 and 1.3, so mostly refer back to these sections.

For all analyses we will (unless otherwise specified):
● only include the baseline sample
● carry out separate analyses for joint injury and OA samples
● remove samples that have missing data in the specific clinical or demographic data

variables under analysis, where relevant
● be carried out on the primary normalised dataset described above, then repeated on

the secondary dataset as a robustness test, with similarities and differences between
the two analyses reported on.

To aid interpretation of the results of these analyses, power calculations for major
sub-analyses (including the detection of endotypes and the detection of correlations between
protein levels and clinical characteristics) are given in Appendix 3.

Throughout the document, all analyses are assumed to be carried out in R1 unless otherwise
specified.

A lay description of these analyses, for the purposes of patient and public involvement, is
given in Appendix 4.

Note that there will also be a separate replication analysis plan, designed based on the results
of the discovery analysis. There will also be a separate joint injury analysis plan. Analysis of
longitudinal data will also be included in a subsequent analysis plan(s).

Primary analysis: Synovial fluid endotypes in OA
Primary analysis questions: Are there multiple synovial fluid molecular endotypes in OA?
What are the biological functions of proteins involved in each endotype? Do these endotypes
correlate with clinical features?

Sub-analysis 1.1: Unsupervised clustering
Questions:

● How are the proteomic data clustered in OA and in injury? How many clusters are
there in each group?

1 https://www.r-project.org/



○ Does this clustering remain if all samples (OA and injury) are clustered
together?

● Are these data well described by multiple clusters?
○ Is the number of clusters statistically significantly different from 1?
○ Is this data well described by clustered as opposed to continuous non-clustered

variation?
Results:

● Principal components for each samples (separately within OA and joint injury, and
combined)

● UMAP coordinates for each sample (separately within OA and joint injury, and
combined)

● Cluster assignments for each sample (separately within OA and joint injury, and
combined)

● The value of each of the clustering criteria metrics for each possible number of
clusters

● The value of each of the clustering criteria metrics for optimal number of clusters
Plots:

● Plots of the clustering metrics against cluster numbers.
● Plot of clusters by principal components and UMAP coordinates.

Method:
We will carry out dimensional reduction on batch-corrected QC+ normalised log protein
quantification using unscaled PCA, and will select the top principal components explaining
80% variation to construct the reduced feature space. We will carry out unsupervised
clustering on this reduced feature space using k-means clustering with 10 sets of random
starting values.

We will assess clustering primarily using the f(K) statistic, which we will visualise across
cluster numbers, and will judge the data to be significantly clustered for any K with f(K)>0.8
52 . If there is no cluster number K > 1 resulting in f(K)>0.85, we will conclude that we do
not have enough evidence to detect a strong clustering structure. We will also produce plots
of the other three popular metrics (silhouette score, gap statistic and elbow methods) against
cluster numbers to test the robustness of the conclusion.

If the data are clustered, we will pick the cluster number by majority vote across different
clustering metrics (as implemented in the R package NbClust3) for downstream analyses. We
will check the clustering for the selected value of K by visual inspection of the PCA and
UMAP plots.

We will also use alternative parameterisation (different clustering algorithms, including the
algorithm implemented in the R package cclust4, different parameter initialisations), as well
as sampling-with-replacement, to assess the robustness of the clustering and downstream
conclusions. We will also test different approaches to feature engineering and dimensional
reduction, including carrying out kmeans clustering on eigenprotein values generated from
the WGCNA analysis in Sub-analysis 3.1, and using sparse clustering directly on all
measured proteins using the R package sparscl5. In each case, robustness will be measured by

5 https://cran.r-project.org/web/packages/sparcl/index.html
4 https://cran.r-project.org/web/packages/cclust/index.html
3 https://cran.r-project.org/web/packages/NbClust/index.html
2 https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf

https://cran.r-project.org/web/packages/NbClust/index.html
https://www.ee.columbia.edu/~dpwe/papers/PhamDN05-kmeans.pdf


estimating the adjusted Rand index between the various alternative clustering techniques and
the original (PCA, kmeans-based) clustering.

As with all analysis, the clustering mentioned above will be carried out on the primary
batch-corrected protein concentrations data, with a robustness analysis on the secondary
non-batch-corrected protein concentration data.

Our primary clustering analysis (and all follow-on analyses below) will be carried out
separately within the joint injury samples and OA samples separately, but we will also carry
out an all-sample clustering to test how well these clusters generalise between injury and OA.
All comparisons will use the adjusted Rand index.

Sub-analysis 1.2: Identifying characteristic proteins of clusters
Questions:

● Which specific protein signatures distinguish between the clusters?
● Do these proteins fall into correlated sets, or are they independent?

Results:
● A table of differential abundance test statistics (p-value and odds ratio) for each

protein for each cluster, with separate results conditioned and not conditioned on
blood staining

● A table of co-expressed protein modules that associate with endotype.
● Grouping of signature proteins into co-expressed modules.

Plots:
● Violin plot of expression levels of signature proteins for different clusters.
● Heatmap showing associations between protein expression and endotypes.

Methods:
We will test which proteins are differentially expressed in each of the clusters using logistic
regression, where the independent variable is protein concentration and the binary outcome
variable for each sample is 1 if that sample belongs to the tested cluster and 0 if not.
Benjamini-Hochberg will be used to adjust for multiple testing within each cluster. Proteins
with adjusted p-values < 0.05 will be reported as signature proteins for the enquiry endotype.
Note that these p-values will not be uniformly distributed under the null, and thus should not
be considered as true p-values but only as a measure of the relative strength of the differential
expression for each protein. We will carry out a robustness analysis to see whether these
signals are driven by the presence of blood in the sample, by including imputed blood
staining grade as a covariate in the logistic regression and test whether this produces similar
association results to the non-conditioned analysis. We will also test robustness of these lists
by calculating the overlap with proteins with non-zero coefficients in the sparse clustering
results from Sub-analysis 1.1

If more than two clusters are identified, we will also carry out a multinomial regression
analysis, with p-values calculated using a likelihood ratio test, in order to increase power to
identify proteins that are differentially expressed in a particular subset of clusters.



We will use the weighted gene correlation network analysis (WGCNA6) described in
sub-analysis 3.1 below to group the signature genes discovered above into co-expressed
modules. We will also test each discovered co-expressed module (represented by its
eigengene) for correlation with endotype using logistic regression (testing against a p-value
threshold of 0.05/Nclusters).

Sub-analysis 1.3: Bioinformatic characterisation of clusters
Questions:

● What are the functional/biological features that distinguish between the clusters?
○ Which canonical pathways or functions are enriched in the

cluster-distinguishing protein lists?
○ Are individual clusters distinguished by proteins characteristic of a particular

set of cell types?
○ Do the proteins that distinguish each cluster localize to a particular part of the

cell?
○ Which upstream modulators can explain differences in protein levels between

the clusters?
○ Are any clusters enriched for heritability in genome-wide association studies

(GWAS) of OA?

Results:
● Tables showing lists of pathways, cell types, subcellular locations enriched in each

endotype and their corresponding p-values.
● A table with significant upstream regulators for each endotype and their

corresponding p-values.
● Partitioned heritability estimates for each cluster based on OA GWAS.

Plots:
● Bubble charts of enriched gene sets (pathways, cell/tissue types, etc) for each

endotype
● Bar plots of cell type composition and subcellular type composition of the signature

proteins of each cluster.
● Hierarchically clustered heatmaps of the most highly differentially expressed genes,

with colour bars showing which key pathways each protein belongs to
● Network plot of proteins involved in enriched pathways.

Methods:
The overall approach in this section will be to test for enrichment of the per-cluster
differential expression (calculated in sub-analysis 1.2) in a variety of gene sets representing
canonical pathways, cell type of origin, and subcellular localization. Protein set enrichment
testing will be performed using the fgsea package, ranking proteins by p-value. This will
generate a normalized enrichment score (NES), p-value and Benjamini-Hochberg adjusted
p-value for each gene set for each cluster. Rank-based testing does not explicitly assume a
background protein set, but it will implicitly assume the background (i.e. the universe of
proteins) is all proteins tested by SomaLogic that passed QC.

6 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559



Multiple testing adjustments will be carried out within each gene set category (e.g. canonical
pathways, cell type of origin, etc). Gene sets will be considered significant if their adjusted
p-value is less than 0.05.

The gene sets that we will test for are shown in Table 1 below. We will convert from protein
sets to gene sets using the maps provided by SomaLogic. For protein complexes, we will
consider a protein to be contained within a gene set if it includes the product of any gene
within that gene set.

Gene set category Database Specific gene sets Link

Pathways/ontologies MSigDB KEGG http://www.gsea-msigdb
.org/gsea/msigdb/genese
ts.jsp?collection=CP:KE
GG

Pathways/ontologies MSigDB GO http://www.gsea-msigdb
.org/gsea/msigdb/genese
ts.jsp?collection=GO

Pathways/ontologies MSigDB Hallmark http://www.gsea-msigdb
.org/gsea/msigdb/genese
ts.jsp?collection=H

Cell type/tissue of
origin

Human Cell
Atlas

Genes with cell- or
tissue-type specific
expression

https://data.humancellatl
as.org/origin

Cell type/tissue of
origin

Zhang et al and
Chou et al

Genes with cell-type
specific expression in
OA scRNA-Seq

https://www.immport.or
g/shared/study/SDY998
and
https://www.nature.com/
articles/s41598-020-677
30-y.

Cell type/tissue of
origin

Human Protein
Atlas

Genes with high
protein expression
score within each
tissue

https://www.proteinatlas
.org/humanproteome/cel
ltype

Markers of necrosis
and apoptosis

Marshall et al,
Tanzer et al,
Yang et al

Proteins measured
after apoptosis and
necrosis, and classical
alarmins

https://pubmed.ncbi.nlm
.nih.gov/24401845/,
https://www.sciencedire
ct.com/science/article/pi
i/S2211124719317449
and
https://www.ncbi.nlm.ni
h.gov/pmc/articles/PMC
5699517/

https://pubmed.ncbi.nlm.nih.gov/24401845/
https://pubmed.ncbi.nlm.nih.gov/24401845/
https://www.sciencedirect.com/science/article/pii/S2211124719317449
https://www.sciencedirect.com/science/article/pii/S2211124719317449
https://www.sciencedirect.com/science/article/pii/S2211124719317449
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699517/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699517/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699517/


Subcellular location Human Protein
Atlas

Location within cell https://www.proteinatlas
.org/humanproteome/cel
l/organelle

Subcellular location ExoCarta Exosome-associated
proteins

http://www.exocarta.org
/

Table 2: Gene sets to test for enrichment

The first category of gene sets we will consider are canonical pathways and other ontologies.
We will take these genesets from MSigDB, and will include KEGG, Gene Ontology and
Hallmark gene sets.

The second category will be cell and tissue type of origin gene sets. We will use single-cell
RNA-seq data (counts matrices and pre-computed cell type annotations) taken from the
Human Cell Atlas to define cell-type-specific gene sets using EWCE (taking the top 10%
most specific genes for each cluster). For joint-specific scRNA-Seq data, we will eventually
like to rely on the HCA joint atlas data, but as that may not be available in time, we will also
run an initial analysis using the single-cell RNA-Seq from OA samples generated by Zhang et
al7 and Chou et al8. We will also use pre-defined tissue-of-origin annotations produced by the
Human Protein Atlas based on protein arrays.

We will also test gene sets that may indicate the rate and type of cell death, including sets
derived from high-throughput proteomic experiments of apoptotic and necrotic cells9,10, and
from curated lists of alarms released during necrosis11.

Finally, we will generate gene lists based on subcellular location. We will use the
pre-computed Human Protein Atlas data to assign organelle locations to individual proteins
based on immunohistochemistry, and will test gene sets at the broad level (nucleus vs
cytoplasm vs secretary) as well as at the specific organelle level. Finally, we will use gene
sets of exosome-associated proteins, to detect whether individual clusters are characterized by
exosomal transport.

We will also run a separate analysis using the package QuaternaryProd12 to uncover upstream
regulators of protein expression within specific endotypes. Regulatory relationships will be
taken from STRINGdb13. We will also test for enrichment of heritability for osteoarthritis in
the genes present in each cluster using partitioned LD Score regression14 and summary
statistics from the latest OA GWAS meta-analysis15.

We will visualize these results using bubble charts of significantly differentially expressed
gene lists for each gene set category and endotype. We will also visualize the protein

15 https://www.nature.com/articles/s41588-018-0327-1
14 https://github.com/bulik/ldsc
13 https://string-db.org/cgi/download
12 https://www.bioconductor.org/packages/release/bioc/html/QuaternaryProd.html
11 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699517/
10 https://www.sciencedirect.com/science/article/pii/S2211124719317449
9 https://pubmed.ncbi.nlm.nih.gov/24401845/
8 https://www.nature.com/articles/s41598-020-67730-y
7 https://www.nature.com/articles/s41590-019-0378-1

https://www.proteinatlas.org/humanproteome/cell/organelle
https://www.proteinatlas.org/humanproteome/cell/organelle
https://www.proteinatlas.org/humanproteome/cell/organelle


co-expression network and enriched pathways using CytoScape16 and igraph17,
clusterProfiler18 and enrichplot19 packages in R.

Sub-analysis 1.4: Clinical characteristics of endotypes
Questions:

● How do the proteomic clusters correlate with clinical features? Including:
○ Sex
○ Age at sample
○ BMI at sample
○ Smoking history
○ Injury vs OA
○ presence/absence of unacceptable knee pain (PASS)
○ continuous knee pain scores (WOMAC pain subscore for OA, KOOS pain

subscore for joint injury).
○ presence/absence radiographic OA (defined as KL grade ≥2/<2)
○ presence/absence of advanced radiographic OA (defined as KL grade ≥3/<3)
○ radiographic severity of OA (KL grade, 0-4)
○ combined pain/radiographic categorization (four categories based on

presence/absence of unacceptable pain (PASS) and presence/absence of
radiographic OA, ≥2/<2)

● Does this clustering exist in synovial fluid from healthy samples or inflammatory
arthritis patients?

Results:
● A table showing associations between each proteomic cluster and each clinical

feature: p values on each endotype for each clinical feature.
● A confusion matrix of cluster assignments across repeated samples from the same

individuals at different times

Plots:
● Barplots showing the distribution of categorical features across different endotypes
● Violin plots showing the distribution of continuous clinical features across different

endotypes.
● PCA/UMAP plots of clustering overlayed with labelled clinical features.

Methods:
We will test for correlation between individual cluster membership and categorical (sex,
smoking history, injury/OA, presence/absence of unacceptable pain, presence/absence of
radiographic/advanced OA, combined pain/radiographic categorization), continuous (age,
pain score, BMI) and categorical (KL grade) demographic and clinical features using logistic
regression. For combined presence/absence of unacceptable pain (defined using PASS) and
radiographic OA, we will run separate analyses comparing patients who have presence of
both to presence of only one (very few patients have absence of both). We will include cohort
as a covariate to control for cohort-specific batch effects. In each case, the p-value will be

19 https://bioconductor.org/packages/release/bioc/html/enrichplot.html
18 https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
17 https://igraph.org/r/
16 https://cytoscape.org/



calculated using a likelihood ratio test, and the p-value threshold will be determined by
Bonferroni correction for all tests taken.

We will also fit a multiple multinomial regression model, predicting endotype category by
including all clinical characteristics above in a single model.

We will visualise the correlation between proteomic clusters and clinical features using bar
plots/violin plots of variables for each cluster, as well as by overlaying cluster identity and
clinical features on a PCA/UMAP plot.

To test whether the endotypes generalize to non-OA and non-joint injury patients, we will
assign the inflammatory and healthy control samples to clusters using the nearest centroid
classifier using centroids from the baseline samples generated in 1.1. We will also project
these samples onto the reduced dimensions (PCA and UMAP) and visualize their positions
relative to baseline samples.

Sub-analysis 1.5: Correlation of technical confounders with endotypes
Questions:

● How do the proteomic clusters correlate with technical confounders? Including:
○ Blood staining (measured or imputed)
○ Bimodal dropout signal status
○ Tranche and processing batch
○ Plate, position in plate, run date
○ Sample age, volume and number of freeze-thaw cycles

Results:
● A table showing associations between each proteomic cluster and each technical

confounder: p values on each endotype for each confounder.
Plots:

● Barplots showing the distribution of categorical technical confounders across different
endotypes.

● Violin plots showing the distribution of continuous technical confounders across
different endotypes.

● PCA/UMAP plots of clustering overlayed with labelled technical confounders.

Methods:
The same analysis approach will be used as in Sub-analysis 1.4, with a few modifications:

1. Technical confounders that are expected to differ across cohorts will be adjusted for
by including cohort as a covariate in the regression analysis. These are: blood
staining, bimodal signal status, processing batch, sample age, sample volume, number
of freeze-thaw cycles.

2. Processing batch will be analysed using a mixed model with processing batch as a
random effect, using the R package lme4.

Secondary analysis: Synovial proteomics of OA clinical features
Secondary analysis questions: for each clinical feature of interest (injury vs OA, pain,
structural severity), which proteins correlate with this feature? What pathways and biological
functions characterise these protein lists?

Sub-analysis 2.1: Finding SF correlates of clinical features
Questions:



● Which specific proteins correlate with each clinical and demographic feature?
○ Injury vs OA
○ presence/absence of unacceptable knee pain (PASS)
○ continuous knee pain scores (WOMAC pain subscore for OA, KOOS pain

subscore for joint injury).
○ presence/absence radiographic OA (defined as KL grade ≥2/<2)
○ presence/absence of advanced radiographic OA (defined as KL grade ≥3/<3)
○ radiographic severity of OA (KL grade, 0-4)
○ combined pain/radiographic categorization (four categories based on

presence/absence of unacceptable pain (PASS) and presence/absence of
radiographic OA, ≥2/<2)

● Are any of these associations driven by known confounders (BMI and smoking
history)?

● Do these proteins fall into correlated sets, or are they independent?

Results:
● Regression coefficients, p-values and standard errors for each protein against each

clinical feature (adjusted for age, sex and cohort and adjusted additionally for BMI
and smoking history)

● Lists of signature proteins for each of the clinical features
● Lists of co-expressed protein modules that associate with each clinical feature.
● Grouping of signature proteins into co-expressed modules.

Plots:
● Violin plot of expression levels of signature proteins for different clinical features.
● Heatmap showing associations between protein expressions and features.

Methods:
This sub-analysis largely mirrors sub-analysis 1.2. The primary differences are:

- In all regression models, we will test log protein expression as the predictor.
- When testing for protein differences between injury vs OA, we will use logistic

regression. When testing for protein differences across the continuous measures
(including pain scores) we will analyse it using linear regression, and for ordinal
measures (KL grade), we will carry out ordinal regression. These same approaches
will be used to test for associations with the eigenproteins generated in sub-analysis
3.1.

- We will check for deviations from additive linearity using diagnostic plots (including
one for age), and if deviations are observed we will apply spline regressions using the
R package gam20.

- We will include age, sex and cohort in each regression to control for confounding. We
will include a secondary analysis conditioning on BMI and smoking history, for
samples where this data is available, as well as a secondary analysis conditioning on
imputed blood staining.

- We will also carry out robustness analyses conditioning on each of the technical
confounders in Sub-analysis 1.5 (each variable included one-by-one as a fixed-effect
covariate, with the exception of processing batch which will be included as a random
effect).

20 https://cran.r-project.org/web/packages/gam/



- For the joint injury vs OA analysis, cohort and outcome are perfectly colinear (as OA
and injury samples are from different cohorts), and thus we cannot include both in a
linear model. For this analysis, we will instead condition only on age and sex, and
then carry out a secondary analysis using a random intercept term for cohort in a
mixed model using the R package lme421.

- We will also produce plots of key differentially abundant proteins across injury, OA,
inflammatory arthritis and healthy samples (though sample size will be too low to
effectively test for differences in the latter two categories).

Sub-analysis 2.2: Bioinformatic characterisation of clinical features
Questions:
What are the functional/biological characteristics of these protein correlates?

● Which canonical pathways or functions are enriched in the clinical-feature-associated
protein lists?

● Are individual clinical features associated with proteins characteristic of a particular
set of cell types?

● Do the proteins that associate with each clinical feature localize to a particular part of
the cell?

● Which upstream modulators can explain differences in protein levels between the
clinical groups?

● Are the proteins associated with the clinical features enriched for heritability in
genome-wide association studies (GWAS) of OA?

Outputs and Methods are the same as for sub-analysis 1.4.

Network analysis: Co-expression and regulation of synovial fluid proteins in OA and injury
Network analysis questions: Are there groups of co-expressed proteins in synovial fluid?
What are the biological functions of these co-expressed proteins? Do these correlation
patterns differ between different clinical groups? Can regulatory relationships and physical
interactions account for this co-expression?

Sub-analysis 3.1: Co-expression analysis
Questions:

● How many groups (modules) of co-expressed proteins are there in synovial fluid?
● What are the biological functions of the proteins in each module?
● Are co-expression patterns conserved between OA and injury, and between low and

high radiographic severity?

Results:
● An adjacency matrix for each gene co-expression network (OA, injury, KL < 2, KL

>=2), with edges given by the Spearman’s rank correlation.
● Lists of proteins included in each module selected by WGCNA.
● Enrichment p-values for each gene list in Table 2 for each module.
● Network similarity metrics and permuted Z-scores between pairs of modules across

different clinical groups (OA vs injury, KL >= 2 vs KL <2).

21 https://cran.r-project.org/web/packages/nlme/index.html



Plots:
- Network plots, coloured by module and submodule.
- Pathway enrichment plots for each module
- Module comparison plots for OA vs injury, and for KL >= 2 vs. KL < 2.

Methods:
We will use the R package GWENA22 to carry out co-expression analyses, following the steps
recommended in the GWENA vignette23. In brief: we will generate unsigned correlation
networks using Spearman’s correlation for baseline OA and joint injury samples. These
networks will be split into modules by hierarchical clustering, with the number of modules
determined using the ‘hybrid’ approach in the R package dynamicTreeCut, with parameter
value deepSplit = 2, followed by merging of modules with correlated eigenproteins
(correlation coefficient > 0.75). To test for enrichment of function pathways in each module,
we will test for overrepresentation of genes in the gene lists in Table 2 in each of the modules
using g:Profiler24, with associations declared significant if they meet p < 0.05 after multiple
testing correlation using the g:SCS algorithm. To test whether patterns of co-expression are
shared across injury and OA samples, we will use GWENA’s comparison-by-permutation
approach (testing both injury modules in OA and OA modules in injury). We will also
generate modules separately for high and low radiographic severity OA (KL >= 3 and KL <
2), and test whether modules are preserved between these patient groups.

We will also test for association between the eigenprotein for each module with discovered
endotypes and with clinical characteristics, as described in Sub-analysis 1.2 and 2.2.

Sub-analysis 3.2: Investigating drivers of synovial protein co-expression
Questions:

● What are the most central (“hub”) proteins in the inferred co-expression networks? Do
these differ between injury and OA, between different radiographic OA severities?

● Do highly coexpressed proteins tend to physically interact?
● Are co-expression effects driven by direct regulatory effects? If so, do these

regulatory relationships differ in different clinical groups?

Results:
● Weighted centrality measures (gene connection significance values) for each protein

in the co-expression network for each group (OA, injury, KL >= 2, KL < 2).
● Unweighted centrality measures (degree and betweenness) for each SomaScan protein

in the protein-protein physical interaction network.
● Network similarity metrics and permuted Z-scores between co-expression and

physical interaction networks.
● Directed adjacency matrix of gene regulatory network (GRN) for each group, and

similarity metrics for GRNs between clinical groups.

24 https://cran.r-project.org/web/packages/gProfileR/index.html
23 https://www.bioconductor.org/packages/release/bioc/vignettes/GWENA/inst/doc/GWENA_guide.html
22 https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04179-4



Plots:
● Network plots of co-expression data with hub proteins highlighted
● Combined network plots of physical and co-expression data, with hub proteins for

both highlighted
● Network comparison plots for co-expression and physical interaction networks
● Box plots of physical PPI centrality statistics for hub and non-hub genes in the

co-expression network
● Directed network plots of GRNs
● Network comparison plots of GRNs between different groups

Methods:
To identify hub proteins (i.e. proteins that have high centrality in the network), we will use
the gene connection significance values implemented in the R package dhga25 (defining hub
proteins as those that have a connection p < 1e-5). We will use the same package to compare
overlap in hub proteins across different conditions.

To find out whether co-expression relationships mirror physical protein interaction, we will
test for similarity between co-expression network and STRING physical PPI network using
the NetworkDistance26 package in R. We will also test whether hub proteins in the
co-expression network have significantly higher degree or betweenness statistics in the
physical PPI network than non-hub proteins.

We will infer directed gene regulatory networks (GRNs) from abundance data using the
GENIE327 R package. We will compare inferred networks across clinical groups (OA vs
injury, KL >= 2 vs. KL < 2).

Networks will be visualized using igraph, GWENA and Cytoscape, where appropriate.

27 https://bioconductor.org/packages/release/bioc/html/GENIE3.html
26 https://cran.rstudio.com/web/packages/NetworkDistance/index.html
25 https://cran.r-project.org/web/packages/dhga/

https://cran.r-project.org/web/packages/dhga/


Appendix 1: Data releases associated with this data
analysis plan
The discovery analysis plan will make use of the datasets described below.

discovery_somascan_1: Proteomic quantification, normalization, batch
correction and QC
This dataset includes SomaScan protein quantification of 7596 somamers for 6627 proteins
for 1045 synovial fluid samples. Protein intensity data is normalized, and then the log
intensity batch corrected by plate using the ComBat function in the sva R package28. Files
released include raw, normalized and batch-corrected data. Throughout the discovery analysis
plan above, the ComBat batch-corrected data should be used as the primary analysis, with the
normalized-but not-batch-corrected data used for secondary robustness tests.

The release also includes filter files to indicate samples and proteins removed using the filters
described in the QA report. Note that protein concentration data is included in the protein
concentration files for all proteins regardless of filter status. A summary of the number of
samples and proteins removed by each filter is included below:

Filter label in file Filter name Description Applies to Primary
(batch-
corrected)

Secondary
(non-batch
corrected)

NONHUMAN Non-human proteins Non-human or control
proteins

Proteins 307 307

OA_REPO Reproducibility in
OA pool

Predicted R2 < 0.5 Proteins 485 485

INJ_REPO Reproducibility in
injury pool

Predicted R2 < 0.5 Proteins 252 252

VOLUME_CONF
OUND

Associated with
sample volume

ANOVA p < 0.05/7289
(conditional on cohort)

Proteins 488 413

FREEZETHAW_
CONFOUND

Associated with
number of
freeze-thaw cycles

ANOVA p < 0.05/7289
(conditional on cohort)

Proteins 83 50

SAMPLEAGE_C
ONFOUND

Associated with
sample age

ANOVA p < 0.05/7289
(conditional on cohort)

Proteins 263 730

BIMODAL_CON
FOUND

Associated with
bimodal signal

ANOVA p < 0.05/7289 Proteins 96 1947

SOMASCAN_FA
IL

SomaLogic inhouse
QC

Hybridization Scale
Factor > 2.5

Samples 2 2

LOD_SAMPLE Limit of detection 25% of proteins
below/above limit of
detection

Samples 12 12

TOTPROT_OUT
LIER

Total protein outliers >5SDs from mean Samples 9 9

PCA_OUTLIER PCA outliers >5SD from combined
centre on top PCs

Samples 15 15

Total remaining Proteins
Samples

5944/7596
1030/1045

4734/7596
1030/1045

28 https://rdrr.io/bioc/sva/man/ComBat.html

https://rdrr.io/bioc/sva/man/ComBat.html


discovery_QApheno_1: Sample and patient characteristics used in quality
control
This dataset includes sample information used to carry out quality assessment on the synovial
fluid samples. It includes the following fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA Participant Identification
Number (PIN)

string

age_sampling Patient age at the time sample was taken (to the
nearest year)

integer
(NA=missing)

sl_plate_id ID of plate the sample was run on string

sl_plate_run_date Date that the same was run string
(“YYYY-MM-
DD”)

sl_plate_position Position of the sample on the 96-well plate string (“XN”,
where X is row
letter and N is
the column
number)

sl_scanner_id ID of the scanner that the sample was read using string

sl_tranche_number Shipment tranche in which sample was run
(tranche1 vs tranche2)

{1 = tranche 1,
2 = tranche 2}

sl_bimodal_signal The technical bimodal signal, strongly
correlated with processing batch, used to
batch-correct the data.

{bimodal1,
bimodal2 -
arbitrary labels
for the two
groups.
NA=missing}

sf_iknee_proc_batch Batch number for index knee sample Integer (NA =
missing)

sf_iknee_proc_order Processing order number for index knee sample Integer (NA =
missing)

sf_iknee_proc_treat_ Date sample was hyaluronidase treated by KIR Text



date (dd-mm-yyyy)

sf_iknee_qc_group Patient grouping (OA, injury or control) at
baseline.

{0 = OA, 1 =
Joint injury, 2 =
healthy control,
3 =
inflammatory
control, NA =
missing}

cohort_name Cohort ID (an arbitrarily chosen integer
assigned to each cohort)

integer

sex Patient sex at baseline (as defined by individual
cohort collectors).

{m = male, f =
female, NA =
missing}

sample_age Time between date of sample collection and date
of STEpUP OA sample processing for the index
knee (years)

float (years)
(NA=missing)

sf_iknee_volume Total SF volume collected (ml) float (ml)

sf_iknee_prev_freeze
_thaw

Has the sample been freeze-thawed prior to
STEpUP OA sample processing?

{0 = No, 1 =
Yes, NA =
Unknown}

sf_iknee_freezethaw
_cycles

Number of freeze-thaw cycles (if known) integer
(NA=missing)

sf_iknee_freezethaw
_spec

Indicates whether the sample has been
freeze-thawed less than, or greater to or equal to
five times.

{0 = <5, 1 = ≥5,
NA = missing}

sf_iknee_bloodstaini
ng

Grading of SF bloodstaining prior to
centrifugation (if known). Scale of 1-4, with
larger numbers corresponding to greater degrees
of blood staining.

{1 = None , 2 =
Mild, 3 =
Moderate, 4 =
Severe, NA =
Not known}

sf_spun_vs_unspun Indicator for whether the sample was
centrifuged prior to receiving at KIR

0 = unspun, 1 =
spun, 2 = not
known

Note on reading the SIN: The SIN is in the format:

STEP[NNNN]-V[N]-F[-R/L]-HT[N][-SP/UN]

STEP[NNNN] is a unique anonymous patient identification number (PIN), V[N] gives the
visit number where the sample was collected (V1 for baseline visit, V[2+] for later visits), F
gives the sample type (all SomaScan samples are F, for synovial fluid), [-R/L] gives the right



or left hand side (present for 2x samples in tranche 1/2 (STEP1433 & STEP2001) and all
samples in tranche 3), HT[N] gives the sample processing number (HT1 is the first
processing of this sample, and so on), and [SP/UN] demarks spun or unspun samples (only
present for spun/unspun pairs, otherwise all samples in this dataset can be assumed to have
been spun).

discovery_DAPpheno_1: Core clinical phenotype data, excluding pain
This dataset includes the clinical phenotype data required for the analyses above, excluding
pain data. It includes the follow fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA STEpUP Participant
Identification Number (PIN)

string

cohort_name Cohort ID (an arbitrarily chosen integer
assigned to each cohort)

integer

sf_iknee_qc_group Patient grouping (OA, joint injury or control) at
baseline. Note that this is a rough description of
the patient group based primarily on the
inclusion criteria of the individual cohorts, and
should not be over-interpreted (e.g. there is no
guarantee that the joint injury grouping is
OA-free).

{0 = OA, 1 =
Joint injury, 2 =
healthy control,
3 =
inflammatory
control, NA =
missing}

age_sampling Patient age at the time sample was taken (to the
nearest year)

integer
(NA=missing)

sex Patient sex at baseline (as defined by individual
cohort collectors).

{m = male, f =
female, NA =
missing}

bmi_sampling Patient body mass index at the time the sample
was taken (calculated from provided height and
weight or directly provided by cohort collector,
in that order of preference)

float (kg/m^2)

kl_grade_worst Kellgren-Lawrence grade of radiographic
severity at time of sampling.

{0 = grade 0
(none), 1 =
grade 1
(doubtful), 2 =
grade 2
(minimal), 3 =
grade 3
(moderate), 4 =
grade 4



(severe), NA =
Missing OR Not
Known}

radiographic_knee_oa Flag indicating whether the sample was taken
from a patient with radiographic OA in the
index knee, defined as a KL grade greater or
equal to two at time of sampling.

{0 = No (i.e. KL
< 2), 1 = Yes
(i.e. KL >= 2),
NA = Missing
OR Not
Known}

kl_grade_advanced Flag indicating whether the sample was taken
from a patient with advanced radiographic OA
in the index knee, defined as a KL grade greater
or equal to three at time of sampling.

{0 = No (i.e. KL
< 3), 1 = Yes
(i.e. KL >= 3),
NA = Missing
OR Not
Known}

smoking_history Flag indicating whether the patient was a current
or past smoker at the time of the baseline
sample.

{0 = No (i.e.
never smoked),
1 = Yes (i.e.
current smoker
or past smoker),
NA = missing
or not
available}

baseline Flag indicating whether this sample is a baseline
sample (as defined in the Introduction).

{0 = No, 1 =
Yes}

discovery_DAPpheno_2: Core pain phenotype data
This dataset includes the continuous and binary patient-reported pain data required for the
analyses above. The release includes the follow fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA Participant Identification
Number (PIN)

string

harm_knee_pain Binary flag indicating whether experienced pain
is above the Patient Acceptable Symptom State
(PASS) at the time of sampling (calculated
manually from the KOOS pain subscale, the
WOMAC pain subscale or knee VAS (
knee-specific NRS/VAS or painDETECT VAS,
in order of preference). Yes vs No.

{0 = No
(acceptable
pain), 1 = Yes
(unacceptable
pain), NA =
missing or Not
Available.}



harm_pain_prom The specific patient reported outcome measure
used to derive harm_knee_pain.

{1 = KOOS, 2 =
WOMAC, 3 =
Knee specific
VAS/NRS, 4 =
PainDETECT
VAS,
NA=missing}

koos_pain KOOS pain subscore (calculated from full
KOOS questionnaire results, or from combined
subscore provided by cohort collectors, in that
order of preference). Scale of 0-100, where 0 is
the worst possible pain recordable.

float

womac_pain WOMAC pain subscore (calculated from full
WOMAC questionnaire results, or from
combined subscore provided by cohort
collectors, or derived from full KOOS
questionnaire results, in that order of
preference). Scale of 0-100, where 100 is the
worst possible pain recordable.

integer

knee_pain_nrs Patient reported knee pain on a Numeric Rating
Scale (0-10), where 10 is the worst pain
imaginable.

float

pd_pain_average_sco
re

Patient reported average pain score (over the last
4 weeks) from the painDETECT questionnaire.
Scale of 0-10, where 10 is the worst pain
imaginable.

integer



Appendix 2: Descriptive statistics for the clinical data
The tables and graphs below give the missingness statistics and the distribution across
cohorts for the released phenotype data. Note that this data is specifically for baseline
samples.

QA variables

Age of sample (one sample with missing data)  

Volume of sample
sf_iknee_qc_group sf_iknee_volume not missing sf_iknee_volume missing

0 (OA) 671 48

1 (Injury) 172 46

2 (Healthy) 1 36

3 (Inflammatory) 0 5

previous freeze-thaw



sf_iknee_qc_group 0 (No) 1 (Yes) 2 (Not known)

0 (OA) 642 76 1

1 (Injury) 211 7 0

2 (Healthy) 0 33 4

3 (Inflammatory) 0 0 5

Number of freeze-thaw cycles (for those that underwent at least one freeze-thaw)
sf_iknee_qc_
group

1 2 3 5 Missing

0 (OA) 4 49 1 0 22

1 (Injury) 1 0 0 1 5

2 (Healthy) 0 2 0 0 31



Five or more freeze-thaws (of those that underwent at latest on freeze-thaw)
sf_iknee_qc_group 0 (<5

freeze-thaws)
1 (>=5
freeze-thaws)

Missing

0 (OA) 74 0 31

1 (Injury) 1 6 0

2 (Healthy) 2 0 1

Blood staining
sf_iknee_qc_group sf_iknee_bloodstaining

present
sf_iknee_bloodstaining
missing

0 (OA) 265 454

1 (Injury) 165 53

2 (Healthy) 4 33

3 (Inflammatory) 5 0



Demographic variables

sex
sf_iknee_qc_group sex == “m” (male) sex == “f” (female) sex == “” (missing)

0 (OA) 348 371 0

1 (Injury) 176 42 0

2 (Healthy) 25 11 1

3 (Inflammatory) 2 3 0

age
sf_iknee_qc_group age present age missing

0 (OA) 718 1



1 (Injury) 218 0

2 (Healthy) 36 1

3 (Inflammatory) 5 0

bmi
sf_iknee_qc_group bmi_sampling present bmi_sampling missing

0 (OA) 705 14

1 (Injury) 190 28

2 (Healthy) 31 6

3 (Inflammatory) 0 5

smoking history



sf_iknee_qc_group 0 (No) 1 (Yes) 2 (Not known)

0 (OA) 334 298 87

1 (Injury) 172 35 11

2 (Healthy) 0 0 37

3 (Inflammatory) 0 0 5

Radiographic variables
KL grade fields

sf_iknee_qc_grou
p

kl_grade_wors
t known and
non-missing

radiographic_
knee_oa
known and
non-missing

kl_grade_adva
nced known
and
non-missing

all KL fields
Not Known or
missing

0 (OA) 188 706 716 3

1 (Injury) 169 170 218 0

2 (Healthy) 29 30 30 7

3 (Inflammatory) 0 0 0 5

Raw KL grades



Radiographic OA flag

Advanced radiographic OA flag



Pain variables

Unacceptable (above PASS) pain

sf_iknee_qc_group harm_knee_pa
in == 0 (No)

harm_knee_pa
in == 1 (Yes)

harm_knee_pain ==
2 or missing
(Unknown)

0 (OA) 91 409 219

1 (Injury) 60 156 2

2 (Healthy) 30 1 6

3 (Inflammatory) 0 0 5

PROM used to calculate thresholded pain

sf_iknee_qc_gr
oup

KOOS WOMAC Knee specific
VAS/NRS

PainDETECT
VAS

Missing

0 (OA) 0 427 16 57 219

1 (Injury) 204 0 12 0 2

2 (Healthy) 0 31 0 0 6

3
(Inflammatory)

0 0 0 0 5



KOOS pain subscore data

sf_iknee_qc_grou
p

koos_pain
nonmissing

koos_pain
nonmissing

0 (OA) 419 300

1 (Injury) 204 14

2 (Healthy) 0 37

3 (Inflammatory) 0 5

WOMAC pain subscore data

sf_iknee_qc_grou
p

womac_pain
nonmissing

womac_pain
missing



0 (OA) 427 292

1 (Injury) 161 57

2 (Healthy) 31 6

3 (Inflammatory) 0 5



Appendix 3: Power calculations

In the interests of brevity, we will not present a detailed power calculation for every
sub-analysis detailed above. Instead, the figures below show power assessments for a few key
analyses, to aid interpretation of analysis results.

Figure A3.1 shows the power that our analysis approach will have to detect significant (f_k <
0.85) clustering of OA samples, assuming a simple clustering structure across 10 principal
components, with varying strength of clustering and true number of underlying clusters. We
have provided reduced dimensional representations of three example clustered datasets that
represent scenarios where our analysis would have high power (>80%) to detect clustering if
there were two, three or four underlying clusters. If two clusters exist in the data, we will
have high power to detect them even if the clustering is relatively subtle, but as the number of
clusters grows we require stronger overall clustering to be well powered.

Figure A3.2 demonstrates the power for the more stringent task of detecting significant
clustering and assigning the correct number of clusters. For two true clusters, this is similar to
the power for detecting significant clustering alone, but for three or four true clusters the
power is limited even for a large number of clusters. The conclusion of this analysis is that
the number of assigned clusters should be considered a lower limit rather than a good
estimate of the true number.

Figure A3.3 shows the power to detect significant correlations between protein concentration
and a continuous clinical variable (such as the continuous pain score) in the OA and injury
samples. This analysis stands here as a proxy for, and upper limit on, the power for
associations between proteins and clinical variables in general. The OA analysis shows >80%
power to detect associations with a correlation coefficient >0.19 (i.e. where the protein can
account for >3.6% of variance in the continuous clinical variable). For the injury analysis,
this correlation coefficient value is >0.34 (i.e. accounting for >11.9% of variance).

Methods
The power to detect significant clustering, and assign the correct number of clusters, was
assessed using simulation. To simulate the reduced dimensional space, we used a
10-dimensional Gaussian mixture model with cluster frequencies sampled from
dirichlet(alpha = 10), and covariance matrices for each cluster sampled from
InverseWishart(20,I10). To simulate a varying degree of sparseness and strength of clustering,
we sampled mean vectors with the first 3, 4 or 5 values sampled from N(0,sigma^2), where
sigma^2 was varied in the range 0-5, and the remaining values of the mean vector set to zero.
The data was then clustered, and the number of clusters determined, as described in
Sub-analysis 1.1.

Power to detect correlation between a protein and a continuous clinical variable was
calculated using the pwr.r.test function in the package pwr, using an alpha value of 0.05/5000.



Figure A3.1: Power to discover significant clustering using k-means clustering and the f_k
statistic (measured by the proportion with f_k < 0.85), as a function of the number of true
clusters and the strength of the clustering, in the OA samples (assuming N=754 samples).
UMAPs are shown for example simulated clusters with between-to-within variance ratios that
produce a power of 80%.



Figure A3.2: Power to correctly determine the true number of clusters using the NbClust
voting approach,, as a function of the number of true clusters and the strength of the
clustering, in the OA samples (assuming N=754 samples).

Figure A3.3: Power to detect significant associations between protein quantifications and a
continuous clinical trait, after correcting for multiple testing (p < 0.05/5000), for OA and
injury samples.



Appendix 4: Lay summary of the analysis plan

Osteoarthritis (OA) affects millions of people worldwide, yet we have limited understanding
of what causes it and how to select the right drugs to treat it. In addition, OA is highly
variable between individuals: some will stay stable for many years with modest pain and
disability, yet others will progress over time and require surgical joint replacement. Joint
injury also predisposes to the development of OA even in younger individuals, but this risk is
also unpredictable. Being able to predict development or progression of disease and identify
distinct or shared molecular causes of disease is vital for developing and testing new
treatments.

STEpUP OA is a large international effort to attempt to answer some of these questions. We
have assembled a group of doctors, scientists and individuals with OA (or at risk of OA)
across a number of universities, pharmaceutical companies and hospitals to design this study.
We will analyse the knee fluid (obtained by needle and syringe) of nearly 2000 individuals
who have a diagnosis of OA or who have recently had an acute knee injury. These samples
have already been collected and are stored. We will use cutting edge methods to measure over
5000 different protein molecules in each of the fluid samples and study these alongside
patient reported measures such as pain and disability.

We are now starting the first major analysis (which we have called the Discovery Analysis),
on the first 1079 samples. Using advanced statistical methods we will be able to address a
number of key questions. We will use the signature of proteins in the knee joint fluid to ask
whether OA is a single disease at the protein level, or whether there are multiple different
types of OA that can be identified. We will seek common pathways which are suggested by
specific proteins to identify possible novel causes of disease. We will study the relationship
between different protein levels and pain to uncover new molecules that could be targeted for
treatment or which could represent an objective marker (biomarker) of pain for future clinical
trials.

Finally we will create a rich data set that can be used by the broader OA community to
enhance OA research internationally and facilitate the development of new drugs for those
with or at risk of OA.



Appendix 4: Sub-Analysis Plan 1: Outcome-Guided Clustering
Author: Laura Bondi and Brian Tom
Date: 05/10/21

Questions to be addressed:
· Using the baseline samples, can we identify subpopulations of patients

homogeneous for protein marker profiles such that clusters may have clinical
meaning (outcome-guided clustering)?

o Are there differences in the molecular endotypes that we find in the disease
patient groups with different radiographic grades (coded by the variables
radiographic_knee_oa, kl_grade_advanced and kl_grade_worst)?

○ How are the proteomic data clustered in knee osteoarthritis (OA) and in acute
knee injury?

● Are these data well described by multiple clusters? How many? This is of interest
when considering only OA patients (low and advanced grade) but also when including
all OA and acute knee injury patients.
· Do “model-based” (outcome-guided) clustering and unsupervised clustering give

similar results in this context? That is, does the clustering remain if all patients are
considered together agnostic to the clinical differentiation of patients?

· Which protein markers have important roles in identifying subgroups of patients
with similar radiographic grade or other clinical outcome/phenotypes, such as
perceived pain? Pain is coded by the variables harm_knee_pain (binary
harmonised knee pain variable), womac_pain (PROM for OA, continuous
variable) and koos_pain (PROM for injury, continuous variable).

Methods:
We will carry out Bayesian profile regression (model-based outcome-guided clustering
approach) to identify clusters of protein marker profiles that are associated with the clinically
relevant outcomes, such as disease radiographic grade (low vs advanced, “disease” group
(OA vs acute injury) or pain severity phenotype. This clustering methodology can handle a
large number of possibly inter-related explanatory variables and uses the information in both
these explanatory variables (i.e. protein markers) and the outcome to produce model-based
clustering structures, where the uncertainty associated with these clustering structures and the
number of clusters is reflected. Convergence of the MCMC algorithm will be investigated by
checking agreement between the “representative” clustering structures for multiple
independent chains and a final representative cluster will be determined.

We will explore variable selection and dimension reduction approaches for determining the
relevant variables or (combination of variables) that inform the clustering structure.
Two-staged and joint strategies will be investigated to determine the most appropriate /
informative way of identifying the relevant variables that lead to clinically meaningful
clustering.

More specifically, in a two-staged approach we can first screen for protein markers that are
differentially expressed between groups of patients defined by the clinical outcome (adjusting
the p-values to account for multiple comparison by say using false discovery rate (FDR) or
Bonferroni’s correction) to be used in the second stage (i.e. application of Bayesian profile
regression). Alternatively we can project the space of protein markers into a low-dimensional
space (e.g. using PCR or PLS) and use a reduced set of derived components as the new
variables to be taken forward to the second stage of Bayesian profile regression. In the joint



approach, we simultaneously perform the clustering and the variable selection within
Bayesian profile regression.

We will compare results from Bayesian profile regression to the main unsupervised clustering
approach, k-means (with dimension reduction), adopted in the SAP and to a sparse k-means
clustering approach.

Results:
· Table of descriptive statistics of the sample of patients used (before clustering),

separately for OA and acute knee injury patients;
· Cluster assignments for each patient under the best partition and uncertainty

associated with such partition;
· Measures of variable importance for the clustering structure;
· Table of descriptive statistics characterising the relevant proteins and outcome

profiles of each cluster

Plots:
· Posterior similarity matrix for the consensus across multiple MCMC chains from

the Bayesian profile regression analysis;
· Cluster sizes for the final representative consensus clustering;
· Protein and outcome profiles of each clusters from the final representative

clustering.


