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Introduction
This document outlines the plan for the analysis of the STEpUP OA Replication dataset.

The Replication proteomic dataset comprises data generated using synovial fluid (SF)
samples from tranches 3 & 4. A total of N = 707 samples (from N = 669 patients) were
processed on the SomaScan SOMA plex V4.1 platform. This left a total of N = 669 samples
from 669 baseline patient samples from 8 cohorts in the Replication data analysis. Baseline
samples are defined as a) the earliest biological sample for each participant (this is typically
the baseline visit), that b) has a disease group and SIN assigned in the clinical database,
and thus included ‘baseline’ samples from the knee joints of osteoarthritis participants (OA,
N=701); N = 595 true baseline samples, N = 20 (visit 3), N = 19 (visit 5), N = 31 (Visit 6), N =
18 (Visit 7), N = 6 (Visit 8) and N = 12 (Visit 9) samples, respectively. Of the baseline OA
samples, N=429 were spun and N=235 were unspun. Unlike the discovery dataset, no joint
injury cases are included in the replicate dataset. A further N = 38 samples from contralateral
knees sampled, of which N=32 were from the same visit and N=6 were from different
follow-up visits, were also analysed but are not defined as baseline samples and will be
analysed separately. A breakdown of these samples by tranche, centrifuge status and
baseline status are summarised in the table below.

Tranche 3 Tranche 4 Total

Baseline knee OA, spun 419 10 429

Contralateral knee OA, spun 38 0 38

Baseline knee OA, unspun 235 0 235

Contralateral knee OA, unspun 0 0 0

All samples have associated clinical data including core demographics (e.g. participant age,
sex), and cohort-level/disease status data (e.g. cohort name, tranche number, disease
grouping (i.e sf_iknee_qc_group)). The majority of the samples also have at least one
cross-sectional prioritised/harmonsed single measure of knee pain (WOMAC for OA, KOOS
for joint injury, or where this is not available a knee-specific VAS/NRS or PainDETECT VAS),
and many have a measure of radiographic disease severity available (e.g. ordinal
Kellgren-Lawrence (KL) grade, binary radiographic knee OA status, and/or binary advanced



radiographic knee OA status variables). We also have data available on confounders (e.g.
BMI and ever smoking history) for most samples.

The Replication dataset for this analysis plan will consist of N = 707 samples with proteomic
and clinical data. The technical and clinical variables included in the dataset are the same as
in the Discovery Analysis Plan v1.1 data release, and details given in Appendix 2 and 3
(which are mostly the same as the table in the appendix of the Discovery data analysis plan),
and descriptive statistics for these variables in the Replication dataset are given in Appendix
1.

Data processing and quality control process
The total of N=707 samples with proteomic data were derived from an initial replication
sample set comprising a larger number of N = 728 OA synovial fluid samples. Before
proteomic profiling by Somalogic in the rerun, 10 samples were excluded by the Oxford lab
due to low insufficient sample volume. Of the remaining N = 718 samples, N = 11 further
samples were not processed by SomaLogic due to insufficient sample volume.

SomaScan data processing normalization and quality control will be carried out as specified
in the Discovery Analysis Plan v1.1, with some modifications. All the spun sample data
underwent optimised standardisation (described in the Discovery Analysis Plan), intracellular
protein score adjustment (a modification of the Total Signal Intensity adjustment, described
below), batch correction for the category combining the plate and bimodal signal (described
in the Discovery Analysis Plan), and finally filtering the samples and proteins with insufficient
quality (using a slightly different filtering process to the Discovery Analysis Plan, outlined in
Appendix 4 and also included in our QC manuscript). The only change in filtering was the
removal of the sample volume filter, which was modified in response to feedback from
clinician members of the Data Analysis Group that differences in sample volume often
reflected differences in disease severity. Note that, for consistency, all Discovery Analyses
have also been rerun using these modified QC procedures.

After starting the discovery analysis, we found that the first principal component, which we
originally described using a total signal intensity (TSI) variable, could be well described using
an Intracellular Protein Score (IPS) variable, calculated as a weighted sum of log relative
concentration (relative fluorescence units), where the weights are given by the Cohen’s d of
log expression between the spun and unspun paired samples. We have thus replaced the
TSI with the IPS as the variable that is adjusted for in the primary adjusted dataset.

Note that the primary replication analysis will only use the spun samples. However, we will
also carry out additional analyses to replicate our results in the unspun dataset (to test
generalisability), and in the combined spun/unspun data (to maximise power). For analysing
the unspun data alone, we will use the same data processing and QC procedure described
above. For the combined analysis we will construct a unified dataset composed of spun and
unspun samples, which will be processed in the same way but with two modifications: 1) we
will adapt the ComBat to batch correction to include spun/unspun status as we well as plate
and bimodal signal status, and 2) we will filter proteins that have inconsistent signals in spun
and unspun samples. Those proteins will be defined using the 18 spun/unspun paired



samples, and we will remove samples with a nominal (uncorrected) p value > 0.05 in the
Pearson correlation test between spun and unspun paired samples.

All analyses will be performed using the standardised, batch-corrected, intracellular protein
score adjusted data – these data will be referred to throughout as the ‘intracellular protein
score adjusted data’ (or simply ‘adjusted data’), and findings generated using these data will
be treated as our primary results. All analyses will also be performed in duplicate using the
normalised, batch-corrected data – these data will be referred to throughout as the
‘non-intracellular protein score adjusted data’ (or simply ‘non-adjusted data’).

All analyses, unless otherwise stated, will be performed using log-transformed protein
abundance data (i.e. log(protein abundance)), and filtered data1.

Data Analysis Plan

Overview of analysis approach
This replication analysis is designed to replicate and expand on the results of the Discovery
Analysis. It is broken down into two sections, Endotype Replication Analysis and Clinical
Association Replication Analysis (replicating the results of the Primary Analysis and
Secondary Analysis respectively, both described in the Discovery analysis plan).

Not all analyses are strictly replication analyses, as some analyses (e.g. the sex and obesity
interactions) are new analyses designed to investigate hypotheses that have arisen since
the discovery analysis was written. These new analyses will be run in both discovery and
replication datasets.

For all analyses we will (unless otherwise specified):
● only include the baseline sample (earliest sample available, and then using the right

knee if bilateral sampling is available)
● when a specific clinical, demographic or QC variable is being analysed, we will

remove samples that have missing data for this variable from that specific analysis
● to be carried out only on spun samples, with unspun samples only analysed in the

robustness analyses stated in the text
● be carried out on the intracellular protein score adjusted dataset described above,

then repeated on the non-adjusted dataset as a robustness test, with similarities and
differences between the two analyses reported on.

Throughout the document, all analyses are assumed to be carried out in R2 unless otherwise
specified.

There are four different main datasets adopted in different sections in this analysis plan:

Spun Replication (N=429) -- The primary replication dataset, including all the spun baseline
OA samples in the replication release (tranche 3 and 4).

2 https://www.r-project.org/

1 Discovery Analysis filters will be applied (these filters are different to those as described in v1.1): n = 6290 proteins included.
We will not filter out proteins associated with sample volume.



Unspun Replication (N=235) - All the unspun OA samples in the replication release, used to
test whether findings generalise to unspun samples (note that there were no unspun
samples in the discovery release)
Spun Combined (N=1147) -- All the spun baseline OA samples from both discovery and
replication data (all four tranches), used for testing hypotheses in the maximally powered full
spun dataset.
Spun+Unspun Combined (N=1385) - All the spun and unspun baseline OA samples across
both discovery and replication, after adjustment for centrifugation effects, used to test
hypotheses in the largest possible sample size.

In parts of the replication analysis disease-free (DF) controls (N=37), taken from the
discovery dataset, are used which are a mixture of spun (N=6) and unspun (N=31) samples
from OA-free patients. Other analyses also use the contralateral knee samples (N=32),
which are spun samples included in the replication dataset, generated from SF taken from
the contralateral knee at the same visit as a baseline ipsilateral knee sample.

Analysis 1: Endotype Replication Analysis
The main purpose of the Endotype Replication Analysis is to verify the robustness and
generalizability of the findings discovered when carrying out the Primary Analysis described
in the Discovery Analysis Plan v1.1.

Key findings from the Discovery Analysis:

1. After the data were adjusted for intracellular protein score (IPS), we did not find
significant clustering within OA patients.

2. We found two significant clusters in OA using the non-IPS-adjusted dataset, with a
large number of proteins significantly higher in one cluster than the other (but no
proteins significantly lower in this cluster).

3. The two clusters differed significantly on their IPS, and the IPS formed a continuum
between the two clusters without a clear cut division between the two

4. We found a number of enriched pathways in differentially abundant proteins between
the two clusters, which was true even if IPS was included as a covariate in the
differential abundance test. It was not clear whether this was due to residual
confounding.

5. We did not find any clinical features correlated with the non-IPS-adjusted clusters

Key Questions to Address in the Replication Analysis:
1. Do we replicate the absence of significant clustering in the independent Spun

Replication samples, or in the larger, maximally powered Spun Combined or
Spun+Unspun Combined datasets of discovery and replication samples?

2. Do we replicate the two clusters in the non-IPS-adjusted data in the Spun Replication
dataset? I.e. is there significant clustering, does it have the same characteristic
proteins and pathways as in the discovery OA set, and does it also reflect a
continuum of IPS value between the two clusters?

3. If clustering does exist in the Spun Replication dataset, is it also uncorrelated with
clinical features?



4. Do the clustering results for IPS-adjusted and IPS-unadjusted discovery samples
generalise to the Unspun Replication samples processed in the same way?

5. Is the clustering structure maintained when we subset the patients to different groups
based on the clinical feature of advanced radiographic knee OA status, using the
Spun Combined data to maximise power?

The detailed analysis approaches and required outputs are listed as follows, structured by
five sub-analyses to address the major questions listed above.

Sub-analysis 1.1: Endotype Detection in the Intracellular Protein Score
Adjusted Data
Questions:

● Does the finding of no significant clustering after IPS adjustment replicate in the
independent Spun Replication data?

● Does the finding of no significant clustering after IPS adjustment replicate in the
maximally powered Spun Combined and Spun/Unspun Combined datasets?

Results:
● Principal components for each sample
● UMAP coordinates for each sample
● The value of f(K) statistic for each possible number of clusters

Plots:
● Plots of the f(K) statistic against cluster numbers.
● PCA plot coloured by clusters and by intracellular protein score
● UMAP plot coloured by clusters and by intracellular protein score

Method:
To replicate findings from discovery analysis, we will calculate the f(K) statistics and cluster
data using k-means clustering on the reduced PCA space.

For the Spun Replication data, we will use two different approaches to reduce the
dimensions for clustering. One approach will be to perform PCA directly on the protein
expression profile of the Spun Replication data. The other approach will be to project the
Spun Replication samples onto the PCA space derived from the discovery analysis. We will
test both approaches. To replicate finding in the Spun Combined and Spun+Unspun
Combined data, the dimensionality reduction will only use the direct clustering on the full
dataset under analysis. The top PCs will be defined by those with cumulative variation
explained accounting for 80% of the total variation.

Combining the two variables (dataset used and PCA reduction approach used), we will
calculate f(K) statistic and perform clustering in four different PCA datasets:

● Spun Replication – clustering of PCs generated directly on the Spun Replication
dataset

● Coordinate Replication – clustering of coordinates of projection of Spun Replication
dataset to PCA space of discovery analysis



● Spun Combined analysis – clustering of PCs generated directly from the Spun
Combined dataset

● Spun+unspun Combined analysis – clustering of PCs generated directly from the
Spun+Unspun Combined dataset

We will use the same criterion to decide whether there exists significant clustering as we
used in the discovery analysis, i.e. the data is not significantly clustered if there is no cluster
number K > 1 resulting in f(K) < 0.85. If the data are significantly clustered, we will pick the
optimal cluster number by majority vote across different clustering metrics (as implemented
in the R package NbClust)

Sub-analysis 1.2: Endotype Detection before Intracellular Protein Score
Adjustment
Questions:

● Do we replicate the finding of two significant clusters in the non-IPS-adjusted Spun
Replication dataset?

● Are any clusters detected characterised by a continuum of intracellular protein scores
between the two in the Spun Replication dataset?

● Are the same set of proteins significantly differentially expressed across endotypes in
the Spun Replication data compared to discovery data?

● Do the same bioinformatic features (significantly differentially regulated pathways,
cell types) characterise the clusters in the Spun Replication dataset as in the
discovery analysis?

● Are the endotypes in the Spun Replication dataset uncorrelated with clinical features,
like in the discovery data?

● Is the same set of technical confounders associated with the endotypes in the Spun
Replication dataset as in the discovery analysis?

Results:
● Cohen’s d and p value of t-test (if two clusters are detected) or Cohen's f and p value

of one way ANOVA (if more than two clusters are detected) to determine the
significant difference between/across the means of intracellular protein score

● A table of differential expression test statistics (p-value and odds ratio) for each
protein per cluster, with separate results conditioned and not conditioned on
intracellular protein score

● Predicted endotype for samples of replication data by classifying to the nearest
cluster centroid derived from the discovery analysis

● Enrichment tables showing lists of pathways, cell types, subcellular locations
enriched in each endotype and their corresponding p-values

● A table with significant upstream regulators for each endotype and their
corresponding p-values

● Lists showing the common and different significant bioinformatic characteristics
between the findings based on discovery data and replication data

● A table showing associations between each proteomic cluster and each clinical
feature: p values on each endotype for each clinical feature

● Lists of common/different significant clinical features associated with endotypes
between discovery data and replication data



● A table showing associations between each proteomic cluster and each technical
confounder: p values on each endotype for each confounder

● Lists of common/different technical confounders associated with endotypes between
discovery data and replication data

Plots:
● Violin plots of intracellular protein score distribution across endotypes
● UMAP visualisation coloured by intracellular protein score and shaped by endotypes
● Point graphs showing comparisons of protein differential expression strength across

endotypes (p values/odds ratios) between replication data and discovery data
● Venn diagrams showing the amount of common/different significant bioinformatic

characteristics/clinical features/technical confounders derived from discovery data
and replication data.

Methods:
We will carry out k-means clustering and use the f(k) statistic to assign significance as
described in the Spun Replication part of the previous section, applied to the
non-IPS-adjusted dataset. To test whether the clustering is consistent between the Discovery
and Replication analyses, we will also generate a projected PCA space as described in the
Coordinate Replication part of the previous section, and then assign Replication samples to
Discovery clusters using nearest centroid classification. We will assess the similarity of the
clustering structures by the adjusted rand index based on the sample membership of the
clusters. Adjusted rand index > 0.9 will be taken as good evidence that the endotype
structure generalises to a broader sample population.

To investigate whether the clusters are featured by the continuum of intracellular protein
score, we will visualise the clusters on UMAP coloured by intracellular protein score.

We will carry out the following analyses for the Spun Replication analysis (using both the
Replication and Coordinate replication clusters) using the same approaches as the
Discovery Analysis Plan v1.1:

● Approaches for protein differential expression analysis (Sub-analysis 1.2 in the
discovery analysis plan)

● Approaches for bioinformatic characterisation of endotypes (Sub-analysis 1.3 in the
discovery analysis plan)

● Approaches for association tests between endotypes and clinical features
(Sub-analysis 1.4 in the discovery analysis plan)

● Approaches for association tests between endotypes and technical confounders(
Sub-analysis 1.5 in the discovery analysis plan)

We will compare the clusters and cell types by plotting effect sizes (log odds ratio and NES
for proteins and pathways respectively) between the two analyses, as well as measuring the
amount of overlap between significant (Benjamini-Hochberg adjusted p < 0.05) associations
in the discovery and replication.

To compare the set of differentially expressed proteins between endotypes in the replication
analysis to those in the discovery analysis, we will make the Venn diagram to track the



common and different protein signatures. We will also make a dot plot of p values per protein
derived from the differential expression regression model for visualisation.

To compare the significant clinical features associated with the endotypes in the replication
analysis and discovery analysis, we will make the Venn diagram to show the common and
different significant clinical features.

Sub-analysis 1.3: Impact of Sample centrifugation on the OA Endotype
Detection based on Proteomic Profile
Questions:

● Do we replicate the finding of no significant clustering after IPS adjustment in the
Unspun Replication dataset?

● Do we replicate the finding of two significant clusters before IPS adjustment in the
Unspun Replication data?

● Are any clusters detected characterised by a continuum of intracellular protein scores
between the two on the Unspun Replication dataset?

● Is the intracellular protein score confounds the same set of proteins which change
their significance status of differential expression across clusters in the UnspunSet
data , compared to discovery analysis?

● Do the same bioinformatic features (significantly differentially regulated pathways,
cell types) feature the clusters in Unspun Replication data as in the discovery
analysis?

● Are the endotypes in the Unspun Replication data uncorrelated with clinical features,
like in the discovery data?

● Is the same set of technical confounders associated with the endotypes in the
Unspun Replication data as in the discovery analysis?

Results:
● Table of coordinates of principal components
● UMAP coordinates
● The value of f(K) statistic for each possible number of clusters
● Enrichment tables showing lists of pathways, cell types, subcellular locations

enriched in each endotype and their corresponding p-values
● Tables showing associations between each proteomic cluster and clinical

feature/technical confounder: p values on each endotype for each confounder.

Plots:
● UMAP visualisation coloured by intracellular protein score and shaped by endotype
● Point graphs showing comparisons of protein differential expression strength across

endotypes (p values/odds ratios) between UnspunSet data and discovery data
● Bubble charts of enriched gene sets (pathways, cell/tissue types, etc) comparing

results from UnspunSet data and discovery data

Methods:
To test whether the “Key findings from the Discovery Analysis” can be generalized to unspun
samples, we will perform the series of analysis – unsupervised clustering, identify
characteristic proteins of clusters, bioinformatic characterization of clusters, clinical



characteristics of endotypes, correlation of technical confounders with endotypes on the
Unspun Replication set only.

We will consider that centrifugation status has no impact on OA endotype detection,
compared to discovery analysis, if
– there is no endotype detected after IPS adjustment
– two endotypes detected before IPS adjustment
– the same set of proteins significantly differentially expressed between the two endotypes
– the same set of significantly enriched pathways and cell types
– no clinical features characterise the two endotypes

Otherwise we will consider that spinning has an impact on OA endotype detection, and that
results from combined spun/unspun datasets should be treated with caution.

Sub-analysis 1.4: Clustering Structure of Subgroups of Patients Stratified
by Advanced Radiographic Knee OA Status
Questions:

● Is there significant clustering within subgroups of patients based on disease stage or
severity?

○ Specifically, is there clustering within early OA patients (defined as KL grades
0 or 1), established but non-advanced radiographic OA patients (KL grade of
2) or advanced radiographic OA patients (KL grade 3 or 4)?

● Is the clustering structure within these disease stages similar or different to that of OA
patients as a whole?

● What are the protein signatures for the clusters (if any) within patients at these
different OA disease stages?

● Which pathways/cell types are significantly enriched for the clusters (if any) within
patients at these different OA disease stages?

● Which upstream transcription factors are significantly (up/down) regulated for
clustering (if present) within patients at these different OA disease stages?

● Any clinical features are significantly associated with the clusters (if any) within
patients at these different OA disease stages?

● Any technical confounders are significantly associated with the clusters (if any) within
patients at these different OA disease stages?

Results:
● Table of coordinates of principal components
● UMAP coordinates
● The value of f(K) statistic for each possible number of clusters
● Enrichment tables showing lists of pathways, cell types, subcellular locations

enriched in each endotype and their corresponding p-values
● Tables showing associations between each proteomic cluster and clinical

feature/technical confounder: p values on each endotype for each confounder.

Plots:
● UMAP visualisation coloured by intracellular protein score and shaped by endotype



● Point graphs showing comparisons of protein differential expression strength across
endotypes (p values/odds ratios) between data and Spun Combined data

● Bubble charts of enriched gene sets (pathways, cell/tissue types, etc) comparing
results to discovery data

Methods:
We will construct three datasets stratifying patients by their radiographic knee OA status
from the Spun Combined dataset - “early OA”, “established but non-advanced radiographic
OA” and “advanced radiographic OA”. Early OA will be defined as having 0 for the
radiographic_knee_oa flag, established non-advanced OA will have 1 for the
radiographic_knee_oa knee OA flag and 0 for the kl_grade_advanced flag, and advanced
OA will have 1 for the kl_grade_advanced flag. Patients with missing or not known for either
of these flags will be excluded.

The total number of baseline spun samples in these three groups are:

OA stage Dcovery Replication Total

Early (KL = 0-1) 54 76 130

Established non-severe (KL = 2) 68 66 134

Severe (KL = 3-4) 580 258 838

The same approaches will be taken to define significant clustering structure, cluster
samples, perform bioinformatic enrichment tests, and test associations with clinical features
and technical confounders, compare the similarity of clustering structure, as described in
sub-analysis1.1 and sub-analysis1.2.

Analysis 2: Clinical Association Replication Analysis
The main purpose of the Clinical Association Replication Analysis is to verify the robustness
and generalizability of the findings discovered when carrying out the Secondary Analysis
described in the Discovery Analysis Plan v1.1.

Key findings from the Discovery Analysis:

1) Using the intracellular protein score adjusted data (adjusting for age and sex), we
observed protein differential abundance between OA and disease-free (DF) control
(largely unspun) samples. Specifically, N = 2088 proteins were differentially abundant in
OA (upregulated: n = 975, downregulated: 1113). Some of the key associated proteins
included: fibronectin, VEGF-β, sTREM-1 were upregulated, and sFRP-3 was
downregulated in OA.



2) Few proteins (N = 5) were significantly associated with WOMAC pain subscores in OA
samples (e.g. NOE2, TBC25, GLYG2, NAR3).

3) Over 100 proteins (N = 191) were associated with KOOS pain subscores in injury
samples (e.g. multiple members of the VEGF family were upregulated with low KOOS
pain scores: VEGF, L-VEGF165, VEGF121).

4) No proteins were associated with the PASS score in OA and injury samples,
respectively (in the primary model).

5) Of those proteins associated in OA, many (n = 947, 45.4%) proteins were also
associated with advanced radiographic knee OA status. Some key proteins that were
associated (i.e. top 20 most strongly associated at p_adj <0.05) in both OA and with
advanced radiographic disease status included: sFRP-3, Fibronectin, MMP-1, Tenascin,
PENK, TSG-6 etc.

6) For most clinical features, when we further adjusted for the effects of cohort, either i) all
signals for protein regulation were lost (e.g. WOMAC pain score, advanced RKOA
status, OA vs DF-controls) or ii) the count of significantly associated proteins
dramatically changed. For example, for KOOS pain subscore, N = 191 proteins were
associated (N = 49 associated with high KOOS scores, N = 142 associated with low
KOOS scores) in the primary model (adjusted for age and sex only); however, further
adjusting for cohort increased the number of significantly associated proteins to N = 433
(105 vs. 328).

Key objectives of the Replication Analysis:

● All analyses as listed in subanalysis 2.1 of the Discovery Analysis Plan (v1.1) will be
run in the Spun Replication dataset (N = 429). Additional analyses will be carried out,
as described below, on the Unspun Replication dataset (N=235) to test
generalisability of the results. Further analyses will be carried out on the DF controls
and the contralateral knee samples. Once all analyses have been completed, a
further analysis will be carried out on the Spun Combined dataset (N=1148) to
produce a maximally powered but unreplicated (and thus provisional) analysis.

● We will compare; i) the counts of proteins associated (at p_adj3 ≤0.05) with each
respective clinical feature per disease group (where appropriate), ii) the ratio of
upregulated (log odds ratio ≥0) vs. downregulated (log odds ratio <0) proteins
associated (at p_adj ≤0.05) with clinical features, and iii) the pathways identified in
subanalysis 2.2 across Discovery, Replication, and Discovery + Replication datasets.

For a protein to be defined as being ‘replicated’ for a given outcome:

A protein’s association with a given phenotype will be considered to be successfully
replicated if it has a Benjamini-Hochberg (BH) adjusted p-value < 0.05 in both the Discovery
and Replication datasets, with effects in the same direction. We will run BH correction across

3 p_adj defined as Benjamini-Hochberg adjusted p-values (generated from regression modeling). Benjamini. Y, and Hochberg,
Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological) 57, no. 1 (1995): 289–300.



all proteins in the Replication dataset; replicability will be defined if the given protein meets
p_adjust ≤ 0.05 in both Discovery and Replication datasets.

Effects that are present only in the discovery or replication will be considered unreplicated,
and thus provisional, results pending future replication. Note that these are not necessarily
false, particularly for analyses (e.g. of ordinal KL grade) for which the replication dataset has
higher power.

We will assess replication by:

1) Counting the number of proteins that are significantly (p_adj ≤0.05) associated in both
Discovery and Replication datasets

2) Counting the number of proteins that have effects (i.e. log odds ratios <0 or >0) in the
same and in opposite directions, stratified by adjusted p-value. If the results generalised
well to the replication, significantly more than 50% of proteins should go in the same
direction (determined by a binomial test), and for significant proteins almost all (>95% for
adjusted p-value < 0.05) should go in the same direction.

3) Assessing how well the beta estimates are correlated for a given clinical outcome, per
protein

4) Generating Venn diagrams to illustrate the overlap in proteins/pathways for each
outcome

5) Of those proteins differentially abundant in OA, assess how many are also associated
with radiographic measures of disease (e.g. advanced radiographic knee OA status).

6) To ensure that our results are not driven by confounding by cohort, we will consider a
result to be significant after accounting for cohort confounding if it is either or both:

a) Significant in discovery (not conditional on cohort) AND significant in replication
(conditional on cohort)

b) Significant in discovery (not conditional on cohort) AND significant in replication (not
conditional on cohort) AND significant in the Discovery + Replication analysis
(conditional on cohort)

To standardize the number of proteins (SOMAmers) investigated across both working
datasets (i.e. adjusted and non-adjusted), the same protein (i.e
CellularCompositionScoreReg_filter == “PASS”) and sample filters (i.e.
CellularCompositionScoreReg_filter == “PASS”) will be applied to both datasets (i.e. spun
and unspun datasets)..

Sub-analysis 2.1: Finding Knee SF Correlates of Clinical Features using
regression modeling

The secondary analysis is designed to build a reference set of proteins (subanalysis 2.1) and
pathways (subanalysis 2.2) that are associated with clinical features of OA in knee synovial
fluid (SF). The replication dataset comprises OA samples only.



Question(s):

● Do associations between specific proteins and clinical features generalise to an
independent replication dataset? Specifically, of those proteins that are associated
with a given clinical feature in the Discovery analysis, are they: i) significant, ii) in the
same direction (based on log odds ratio) and iii) of the same magnitude (size of log
odds ratio & adjusted p.value) in the Replication analysis?

● As was observed in the Discovery analysis, are any observed associations in the
Replication analysis driven by effects of confounding by cohort, and can we
determine which signals remain robust after conditioning on cohort? Do these align
with the findings of the Discovery analysis?

● Are differences, if any, in proteome profiles across disease groups (e.g. OA vs.
DF-controls) driven by sample centrifugation status (spun or unspun)?

● Do the correlations between protein concentration and cross-sectional clinical
features vary between men and women, and between obese and non-obese
patients?

● Are the SF proteins associated with cross-sectional structural severity and
knee-specific pain across individuals also associated with differences in structural
severity and knee-specific pain in different knees of the same individual?

Clinical outcomes include4:

1. OA-related outcomes (i.e. to be explored in OA5 samples only)

● Continuous WOMAC pain subscore (0-100, 100 = worse possible pain)
● Ordinal Kellgren-Lawrence (KL)6 Grade (0 = KL0, 1 = KL1 etc.) (reference group: KL

grade 0)
● Binary Radiographic Knee OA Status (0 = KL<2, 1 = KL ≥2) (reference group: KL

grades <2)
● Binary Advanced Radiographic Knee OA Status (0 = Kl grades 0-2, 1 = KL grades

3-4)(reference group: KL grades 0-2).

2. Disease Grouping:

● Binary disease indicator for OA vs. disease-free control status (reference group:
DF-controls)

** In specific analyses, i.e. OA vs DF-controls, most DF-control samples were ‘unspun’.
Therefore, any differences in proteomes between disease groups could be a result of
technical variation. As the Replication analysis comprises a larger number of unspun
OA samples (>200), we will compare the proteomes of OA and DF-controls samples in
two sensitivity analyses;

i) OA vs DF-controls using only spun samples from both disease indicator groups

6 Kellgren J & Lawrence J. Radiological Assessment of Osteo-Arthrosis. Ann Rheum Dis. 1957;16(4):494-502.
doi:10.1136/ard.16.4.494.

5 Disease grouping is based on the variable ‘sf_iknee_qc_group’.

4 The Replication dataset comprises only OA samples.



ii) OA vs DF-controls using only unspun samples from both disease indicator groups

The primary comparison of OA & DF-control proteomes will include both spun & unspun
samples, using the spin-status-corrected dataset. The analysis of OA vs. disease-free
controls should be interpreted with caution given the small sample size of the disease-free
control group, and the origin of the SF in such cases (e.g. from the contralateral knees of
unilateral OA patients in some cases).

3. Other outcomes:

● Harmonized pain category (0 = acceptable levels of pain, 1 = unacceptable levels of
pain) (reference group: ‘acceptable’ pain) – this is based on the patient acceptable
symptom state (PASS)7

● Phenotype grouping (i.e. no pain & no radiographic knee OA, radiographic knee OA
only, pain only, pain with radiographic knee OA).

It was decided that investigation of protein abundance against phenotype grouping would not
be conducted given the small sample sizes of the non-radiographic/non-painful/symptomatic
radiographic disease phenotype groups.

In addition to the clinical outcomes explored in the Discovery Analysis Plan (v1.1), we will
include additional investigations of other pain PROMS in the Replication analysis. This will
include exploring the relationship between protein abundance and knee-specific NRS and
painDETECT where these are available, respectively. Knee-specific NRS was not prioritized
as the primary pain PROM for generating the PASS for either OA or knee injury disease
groups, so the findings generated from exploring the relationship between protein
abundance and WOMAC pain subscore (for OA), and KOOS pain subscore (for injury),
respectively, will continue be treated as the primary pain PROM findings.

4. Interaction tests with sex and BMI

In order to test whether the correlation between protein levels and clinical variables are
modified by other covariates, we will carry out interaction tests for the OA-related outcomes
listed above. The same regression model will be used as described above, but with the
addition of a protein*covariate term, and each protein will be tested for a significant
interaction. This will be carried out twice, once where the covariate is sex, and once where
the covariate is a binary obesity flag (BMI ≥ 30), using only individuals with BMI data present.
These analyses will be carried out independently in the discovery and replication spun
datasets, corrected for multiple testing using the Benjamini-Hochberg procedure, and results
will be considered to be replicated if they are significant (p_adjusted < 0.05 in both discovery
and replication).

5. Correlation between proteins and OA phenotypes in ipsilateral and contralateral
knees

Cross-sectional correlations between SF proteins and knee phenotypes (structural severity,
pain) could be driven by systemic (i.e. individual-level) or localised (i.e. knee-level) biological

7 Georgopoulos V et al. Harmonising knee pain patient-reported outcomes: a systematic literature review and meta-analysis of
Patient Acceptable Symptom State (PASS) and individual participant data (IPD). Osteoarthritis Cartilage. 2023 Jan;31(1):83-95.



effects. In order to test which is more important, we will use the N=32 contralateral knee
samples in the data. For each of these 32 individuals, we will generate outcomes based on
the difference in phenotype across the knees, specifically:

a) Difference in advanced OA status (+1 for advanced radiographic OA in ipsilateral
knee and non-advanced radiographic OA in contralateral knee, 0 for same status in
both knees, -1 for non-advanced radiographic OA in ipsilateral knee and advanced
radiographic OA in contralateral knee)

b) Difference in radiographic OA (calculated in the same fashion)
c) Difference in KL grade (KL grade in ipsilateral knee minus KL grade in contralateral

knee
d) Difference in WOMAC pain (pain in ipsilateral knee minus pain in contralateral knee)

In each case, we will use as the predictor the difference in log protein expression, and
results will be tested in a linear model with no additional covariates (as this analysis is
already controlled for confounding by using matched knees from the same individuals).

As power is limited by the sample size, we will only examine 10 proteins per outcome,
chosen as the 10 most significant proteins from the cross-sectional analysis. We will use BH
correction to test for significance (adjusted p < 0.05), and will also plot the effect size from
the cross-sectional analysis against the effect size from the ipsilateral/contralateral model to
see if they have consistent effects.

Data:

● All analyses listed in subanalysis 2.1 will be performed twofold (with the exception of
the OA vs. DF-controls analysis); i) with spun samples only (Spun Replication) and
iii) unspun samples only (Unspun Replication). We will treat analyses using ‘spun’
samples only as our primary results.

Early Investigation:

Early investigations comparing log-fold change values generated from linear regression
modeling (using limma package) against log-odds ratios generated using logistic regression
modeling showed strong, linear agreement in generated p-values, but poor agreement in
regression estimates – see plot below. This was important when ordering proteins based on
both p-values and regression estimates as this yielded different lists (e.g. ‘top 10’ proteins)
when using either log-odds or log-fold change values. To improve the agreement with
log-fold change values, it was decided that all log odds ratios would be normalized to per
standard deviation change in protein abundance. To achieve this, all protein abundance
values will be normalized per standard deviation change in protein abundance using the
following function; function(x) exp(log(x)/sd(log(x)).



Figure 2: Comparison of (A) p-values from logistic and linear (i.e. limma) models and (B)
log-fold change values against log-odds ratios per standard deviation change in protein
abundance, generated from linear and logistic regression modeling for the following model:
protein abundance against disease grouping (OA vs. DF-controls, adjusted for age & sex).
Proteins that were identified as being statistically significant in both models are shown in red.

Methods:
● In each of the respective regression models, we will test log protein abundance as the

predictor against each of the clinical outcomes.
● When testing for differences in protein abundance between disease groups (i.e. OA vs.

disease-free-controls), as defined using the disease grouping variable
(‘sf_iknee_qc_group’), we will use logistic regression. When testing for protein abundance
differences across the continuous measures including WOMAC pain subscore and KOOS
pain subscores we will use linear regression, and for ordinal measures (KL grade), we will
carry out ordinal regression.

● Specifically, for linear regression models, we will use quadratic transformations where
there is evidence of non-linearity (e.g. lm(womac_pain ~ protein_abundance +
protein_abundance, data=data)).

● The primary model will include confounder adjustment for: participant age (at time of
sampling) and sex only.

● Further testing will be performed to examine if any of the observed associations are
driven by known clinical or technical confounders. Testing will be performed by including
different lists of confounders in the regression models;

➢ Primary model: participant age & sex
➢ Robustness test (1): participant age, sex, BMI and smoking history (smoking_history)
➢ Robustness test (2): participant age, sex & intracellular protein score8

➢ Robustness test (3): participant age, sex & cohort
➢ Robustness test (4): participant age, sex & log-transformed haemoglobin9

9 Log-transformed haemoglobin: calculated as log(seq.4915.64).

8 Defined as per our intracellular protein score equation.



➢ Robustness test (5): participant age, sex & centrifugation status

● When testing for differences in log-transformed protein abundance between disease
groups, we will carry out a secondary analysis using a random intercept term for cohort in
a mixed model using the R package lme410.

● Further, we will assess the effects of technical confounders (i.e. plate number, plate
position, plate run date, tranche, sample freeze thaw cycles, processing batch, processing
date, sample age and sample volume).

● In the Discovery Analysis, we observed in many cases (e.g. differences in injury and
DF-control proteomes) strong associations between participant age and the given clinical
outcome. Due to the structure of the data and nature of the cohorts included, participant
age in such cases almost exclusively explained belonging to a given disease group
beyond differences in protein abundance – this was due to little overlap in participant age
across e.g. injury and control disease groups, which in turn resulted in fitting errors in
logistic regression. Therefore, when model fitting fails due to the occurrence of
probabilities of 0 or 1 in the primary logistic model (adjusting for sex & age), we will
investigate the sole affect of participant age (by removing as a confounder) and determine
whether inclusion of this confounder is appropriate. If we observe either extreme
binarisation of adjusted p-values or p-values close to 1.00 or 0, we will remove participant
age from the primary model. In addition, in the Discovery analysis most signals for protein
regulation were lost after adjusting for cohort. To test the robustness of our findings to
potential cohort effects, we will additionally compare: i) agreement in regression estimates
and adjusted p-values, respectively, generated from the Discovery (of models adjusting
for age & sex only) and Replication (of models adjusting for age, sex and cohort)
datasets. In addition, we will perform an analysis pooling all samples from the Discovery
and Replication datasets adjusting for age, sex and cohort.

Results:
● Regression coefficients (normalized per standard deviation change in protein abundance),

p-values and standard errors for each protein against each clinical feature will be
calculated using the appropriate regression model (i.e. linear, logistic or ordinal logistic
regression).

● In addition, for each outcome examined, adjusted P-values will be calculated using
Benjamini-Hochberg11 multiple testing correction.

● Protein lists will be generated for each of the given clinical features. These protein lists
will not be filtered to only include proteins that are statistically significantly associated (at
an adjusted p-value of 0.05) with the given feature.

Plots:
● For each respective clinical outcome, volcano plots of log odds-ratios per standard

deviation change in protein abundance against -log10(adjusted p-values) for each protein
will be generated. Where appropriate, the top 20 most statistically significant proteins
(p_adj ≤0.05) will be labelled – these plots will be included in the Replication Results
release.

11 Benjamini, Yoav, and Yosef Hochberg. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple
Testing.” Journal of the Royal Statistical Society. Series B (Methodological), vol. 57, no. 1, 1995, pp. 289–300.

10 https://cran.r-project.org/web/packages/lme4/lme4.pdf



● For each clinical outcome, plots evaluating agreement in proteins that do and do not
reach levels of statistical significance (at adjusted p-values of ≤ 0.05) when using either
intracellular protein score adjusted or non-IPS-adjusted datasets will be generated –
these plots will be used for diagnostic purposes and will be included in the Replication
results release.

Sub-analysis 2.2: Bioinformatic characterisation of clinical features

Questions:

● Does the pathway result for each clinical feature generalize to the Replication
dataset?

● Do we observe the same pathways associated with clinical features across datasets
(i.e …. vs. non-IPS adjusted)?

● Do we observe the same pathways associated with clinical features in spun and
unspun samples?

Methods:

The overall approach for subanalysis 2.2 is to test for differences in gene enrichment
between disease groups (i.e. OA vs disease-free controls) and across levels of disease
severity (e.g. continuous pain measures, ordinal KL grade, binary radiographic knee OA
status etc) within OA using log-odds ratios and p-values generated from regression
modelling in sub-analysis 2.1. Protein set enrichment testing will be performed using the
fgsea12 package in R. Specifically, proteins will be ordered in a ranked list by a ‘rank metric’
calculated as;

rank metric = -log(p-values) * sign(log odds ratio per SD)

The ranked protein list will then be compared to a gene set (i.e. list of genes known to be
associated with a biological process, gene ontology, molecular function or pathway). The
‘rank metric’ will be used to calculate the normalized enrichment score (NES) that indicates
the degree by which a gene set is overrepresented at the extremes of the ranked list (i.e.
upregulated or downregulated). Using fgsea, we will generate a normalized enrichment
score (NES), p-value and Benjamini-Hochberg adjusted p-value for each gene set for each
protein. Multiple testing adjustments will be carried out within each gene set category (e.g.
canonical pathways, cell type of origin, etc). Gene sets will be considered significant if their
adjusted p-value is ≤0.05.

The primary gene sets that will be used to test for enrichment are shown in Table 1 (shown
below). We will convert from protein sets to gene sets using the maps provided by
SomaLogic (using specifically ‘EntrezGeneSymbol’ or ‘EntrezGeneID’). For protein
complexes, we will consider a protein to be contained within a gene set if it includes the
product of any gene within that gene set (as per the Discovery analysis plan).

12 Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 2015 Dec 23;1(6):417-425. doi: 10.1016/j.cels.2015.12.004. PMID: 26771021; PMCID:
PMC4707969



Table 1: Gene sets to test for protein enrichment

Gene set
category

Database Specific gene
sets

Links

Pathways /
ontologies

MSigDB KEGG
(186 gene sets)

http://www.gsea-msigdb.org/gse
a/msigdb/genesets.jsp?collectio
n=CP:KEGG

Pathways /
ontologies

MSigDB GO
(10,561 gene sets)

http://www.gsea-msigdb.org/gse
a/msigdb/genesets.jsp?collectio
n=GO

Pathways /
ontologies

MSigDB Hallmark
(50 gene sets)

http://www.gsea-msigdb.org/gse
a/msigdb/genesets.jsp?collectio
n=H

Pathways /
ontologies

MSigDB Reactome
(1654 gene sets)

https://www.gsea-msigdb.org/gs
ea/msigdb/human/genesets.jsp?
collection=CP:REACTOME

The primary gene sets we will consider are canonical pathways. We will take these gene
sets from the MSig’database (MSigDB), and will include KEGG, Gene Ontology (GO),
Hallmark and Reactome gene sets.

Data: Protein lists for each respective clinical outcome per intracellular protein score and
non-IPS-adjusted datasets, as generated in subanalysis 2.1 (including estimates, p-values,
adjusted p-values etc), will be passed to gene set enrichment analysis. These protein lists
will include all proteins examined irrespective of whether a statistically significant association
(adjusted p-value of ≤ 0.05) was observed with the given outcome. Clinical outcomes that
show no evidence of protein regulation will still be passed through fgsea, though these
results should be interpreted with caution.

Other Gene Sets / Software for Pathway Analysis Visualisation



Additional gene sets will be explored using plug-ins available in Cytoscape13 including the
‘Human Network’ (HumanConsensusPathDB14) gene set accessed through the
Phenoscape15 app menu.

Cytoscape conventionally requires gene abundance data in the form of fold changes and
(adjusted) p-values, however, in our case we will instead provide log-odds ratio per standard
deviation in protein expression estimates, and adjusted p-values. Cytoscape calculates an
abundance score for each node in the network as:

log2foldchange * -log10(pvalue)

Analysed abundance data with gene symbols (i.e. gene names), fold change and P-values
are imported into Cytoscape and matched with the loaded network by gene symbol. No
thresholding by fold change or P-value is required as “significance is determined at a
sub-network level by calculation of empirical P-values through random sampling of the
background network”16.

Results/Plots:

We will visualize these results using bubble plots of significantly differentially expressed
gene lists for each gene set category, and we will visualize the protein co-abundance
network and enriched pathways using the RCy317 package in R (alternatively using
Cytoscape software directly). Proteins that are statistically significantly regulated (based on
adjusted p-values ≤ 0.05) within a differentially enriched pathway will be visualised using
pathview18 R package (specifically, for KEGG gene set). We will group our clinical outcomes
into two main bubble plots; i) OA-related outcomes, (WOMAC, ordinal KL grade, binary
RKOA status, binary advanced RKOS status, PASS) and ii) disease-grouping (comparison
of OA vs. DF control proteomes).

18 Luo, Weijun, Brouwer, Cory (2013). “Pathview: an R/Bioconductor package for pathway-based data integration and
visualization.” Bioinformatics, 29(14), 1830-1831. doi: 10.1093/bioinformatics/btt285.

17 Gustavsen, A. J, Pai, Shraddha, Isserlin, Ruth, Demchak, Barry, Pico, R. A (2019). “RCy3: Network Biology using Cytoscape
from within R.” F1000Research. doi: 10.12688/f1000research.20887.3.

16 Jamie Soul, Sara L. Dunn, Tim E. Hardingham, Ray P. Boot-Handford, Jean-Marc Schwartz, PhenomeScape: a cytoscape
app to identify differentially regulated sub-networks using known disease associations, Bioinformatics, Volume 32, Issue 24,
december 2016, Pages 3847–3849, https://doi.org/10.1093/bioinformatics/btw545

15 Jamie Soul, Sara L. Dunn, Tim E. Hardingham, Ray P. Boot-Handford, Jean-Marc Schwartz, PhenomeScape: a cytoscape
app to identify differentially regulated sub-networks using known disease associations, Bioinformatics, Volume 32, Issue 24,
december 2016, Pages 3847–3849, https://doi.org/10.1093/bioinformatics/btw545

14 Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB--a database for integrating human functional interaction
networks. Nucleic Acids Res. 2009 Jan;37(Database issue):D623-8. doi: 10.1093/nar/gkn698. Epub 2008 Oct 21. PMID:
18940869; PMCID: PMC2686562.

13 https://cytoscape.org/.



Appendix 1: Descriptive statistics for the clinical data that comprise the Replication data
release19.

Note that, due to a database export error, N=6 samples were excluded from data processing
and thus from all of the tables and plots in this appendix. Specifically, this was 6 samples of
contralateral knees taken at a different time-point from a baseline sample. N=3 of these were
samples taken at later visits, and N=3 were samples taken at earlier visits (for the latter, we
have assigned the later sample as the baseline sample to ensure we still have data for this
individual).

The tables and graphs below give the missingness statistics and the distribution across cohorts for the
released phenotype data.

Summary of samples by cohort and tranche

19 N = 707 samples processed with proteomic data.



Cohort Number 3 7 8 9 10 11 12 17 Total

Sample Count
(tranche 3)

55 38 32 67 3 187 73 242 697

Sample Count
(tranche 4)

10 - - - - - - - 10

70720

QA Variables21:

1. Age of sample (no missing data)

21 Of the N = 707 samples, N = 702 samples had a QC group allocation. All figures and tables relate
to N = 702.

20N = 707 samples (from 669 patients) remained. Of these 669 patients, 32 had bilateral sampling at
the same study visit so in these cases the right knee was selected for inclusion.A further 6x cases had
contralateral sampling at follow-up, for which the right knee was selected for analysis.



2. Sample volume

sf_iknee_qc_group sf_iknee_volume available missing

702 (OA) 472 230



3. Previous Freeze thaw status

sf_iknee_qc_group Total number previously
freeze-thawed

Total number NOT
previously freeze-thawed

missing

702 (OA) 212 490 0



4. Number of freeze-thaw cycles (for those that underwent at least one previous
freeze-thaw)

sf_iknee_qc_group sf_iknee_freezethaw_cycles status

Available in samples that previously
undergone at least one freeze-thaw

missing

702 (OA) 41 171



5. Five or more freeze-thaws (of samples that underwent previous freeze-thaw)

sf_iknee_qc
_group

sf_iknee_freezethaw_spec available in
samples previously freeze-thawed

missing

702 (OA) 100 112

6. Blood Staining



sf_iknee_qc_group sf_iknee_bloodstaining score
available

Missing

702 (OA) 294 408

Demographic variables:

1. Sex

sf_iknee_qc_grou
p

Sex == “m” (male) Sex == “f”
(female)

Missing

702 (OA) 328 (46.7%) 374 (53.3%) 0



2. Participant age (no missing data)

3. Participant BMI



sf_iknee_qc_group Participant BMI available Missing

702 (OA) 585 117

4. Smoking History

sf_iknee_qc_group No history of ever
smoking

History of ever
smoking

Missing

702 (OA) 288 (41.0) 231 (32.9) 183 (26.1)



Radiographic Variables

There are 4 samples with no radiographic measure of disease severity (i.e. missing ordinal
KL grade, and binary indicators for the presence of radiographic & advanced radiographic
knee OA).

1. Ordinal KL Grade

sf_iknee_qc_group Ordinal KL grade available Missing

702 (OA) 628 74



2. Radiographic knee OA status

sf_iknee_qc_group Binary indicator for the presence of
radiographic knee OA available

Missing

702 (OA) 698 4



3. Advanced radiographic knee OA status

sf_iknee_qc_group Binary indicator for the presence of
advanced radiographic knee OA available

Missing

702 (OA) 666 36



Pain Variables:

1. WOMAC pain score (derived from WOMAC or KOOS items) for OA samples

- Two cohorts do not have WOMAC measures (N = 254)

sf_iknee_qc_group WOMAC Pain Sub-score Available Missing

702 (OA) 427 275



2. Knee-specific NRS/VAS

sf_iknee_qc_group Knee-specific NRS/VAS Available Missing

702 (OA) 424 278



3. painDETECT (average pain score)

sf_iknee_qc_group painDETECT Available Missing

702 (OA) 37 665



4. Harmonised knee patient reported outcome measure (PROM)

sf_iknee_qc_group Harmonised Knee PROM Available Missing

702 (OA) 556 146



5. Harmonised Pain Category

sf_iknee_qc_group Harmonised Pain Category Available Missing

702 (OA) 556 146



Appendix (2):

replication_QApheno_1: Sample and patient characteristics used in quality
control

This dataset includes sample information used to carry out quality assessment on the synovial
fluid samples. It includes the following fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA Participant Identification
Number (PIN)

string

age_sampling Patient age at the time sample was taken (to the
nearest year)

integer
(NA=missing)

sl_plate_id ID of plate the sample was run on string

sl_plate_run_date Date that the same was run string
(“YYYY-MM-
DD”)

sl_plate_position Position of the sample on the 96-well plate string (“XN”,
where X is row
letter and N is
the column
number)

sl_scanner_id ID of the scanner that the sample was read using string

sl_tranche_number Shipment tranche in which sample was run
(tranche3 vs tranche4)

{3 = tranche 3,
4 = tranche 4}

sl_bimodal_signal The technical bimodal signal, strongly
correlated with processing batch, used to
batch-correct the data.

{bimodal1,
bimodal2 -
arbitrary labels
for the two
groups.
NA=missing}

sf_iknee_proc_batch Batch number for index knee sample Integer (NA =
missing)

sf_iknee_proc_order Processing order number for index knee sample Integer (NA =
missing)



sf_iknee_proc_treat_
date

Date sample was hyaluronidase treated by KIR Text
(dd-mm-yyyy)

sf_iknee_qc_group Patient grouping (OA, injury or control) at
baseline.

{0 = OA, 1 =
Joint injury, 2 =
healthy control,
3 =
inflammatory
control, NA =
missing}

cohort_name Cohort ID (an arbitrarily chosen integer
assigned to each cohort)

integer

sex Patient sex at baseline (as defined by individual
cohort collectors).

{m = male, f =
female, NA =
missing}

sample_age Time between date of sample collection and date
of STEpUP OA sample processing for the index
knee (years)

float (years)
(NA=missing)

sf_iknee_volume Total SF volume collected (ml) float (ml)

sf_iknee_prev_freeze
_thaw

Has the sample been freeze-thawed prior to
STEpUP OA sample processing?

{0 = No, 1 =
Yes, NA =
Unknown}

sf_iknee_freezethaw
_cycles

Number of freeze-thaw cycles (if known) integer
(NA=missing)

sf_iknee_freezethaw
_spec

Indicates whether the sample has been
freeze-thawed less than, or greater to or equal to
five times.

{0 = <5, 1 = ≥5,
NA = missing}

sf_iknee_bloodstaini
ng

Grading of SF bloodstaining prior to
centrifugation (if known). Scale of 1-4, with
larger numbers corresponding to greater degrees
of blood staining.

{1 = None , 2 =
Mild, 3 =
Moderate, 4 =
Severe, NA =
Not known}

sf_spun_vs_unspun Indicator for whether the sample was
centrifuged prior to receiving at KIR

0 = unspun, 1 =
spun, 2 = not
known

Appendix (3):

replication_DAPpheno_1: Core clinical phenotype data, excluding pain



This dataset includes the clinical phenotype data required for the analyses above, excluding
pain data. It includes the follow fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA STEpUP Participant
Identification Number (PIN)

string

cohort_name Cohort ID (an arbitrarily chosen integer
assigned to each cohort)

integer

sf_iknee_qc_group Patient grouping (OA, joint injury or control) at
baseline. Note that this is a rough description of
the patient group based primarily on the
inclusion criteria of the individual cohorts, and
should not be over-interpreted (e.g. there is no
guarantee that the joint injury grouping is
OA-free).

{0 = OA, 1 =
Joint injury, 2 =
healthy control,
3 =
inflammatory
control, NA =
missing}

age_sampling Patient age at the time sample was taken (to the
nearest year)

integer
(NA=missing)

sex Patient sex at baseline (as defined by individual
cohort collectors).

{m = male, f =
female, NA =
missing}

bmi_sampling Patient body mass index at the time the sample
was taken (calculated from provided height and
weight or directly provided by cohort collector,
in that order of preference)

float (kg/m^2)

kl_grade_worst Ordinal Kellgren-Lawrence grade of
radiographic severity at time of sampling.

{0 = grade 0
(none), 1 =
grade 1
(doubtful), 2 =
grade 2
(minimal), 3 =
grade 3
(moderate), 4 =
grade 4
(severe), NA =
Missing OR Not
Known}

radiographic_knee_oa Flag indicating whether the sample was taken
from a patient with radiographic OA in the
index knee, defined as a KL grade greater or
equal to two at time of sampling.

{0 = No (i.e. KL
< 2), 1 = Yes
(i.e. KL >= 2),
NA = Missing



OR Not
Known}

kl_grade_advanced Flag indicating whether the sample was taken
from a patient with advanced radiographic OA
in the index knee, defined as a KL grade greater
or equal to three at time of sampling.

{0 = No (i.e. KL
< 3), 1 = Yes
(i.e. KL >= 3),
NA = Missing
OR Not
Known}

smoking_history Flag indicating whether the patient was a current
or past smoker at the time of the baseline
sample.

{0 = No (i.e.
never smoked),
1 = Yes (i.e.
current smoker
or past smoker),
NA = missing
or not
available}

baseline Flag indicating whether this sample is a baseline
sample (as defined in the Introduction) or is the
primary sample to be included in analysis (right
knee to be used in cases of bilateral sampling at
the same visit).

{0 = No, 1 =
Yes}

replication_DAPpheno_2: Core pain phenotype data

This dataset includes the continuous and binary patient-reported pain data required for the
analyses above. The release includes the follow fields:

Field Description Coding

sf_iknee_sample_id_
number

The STEpUP OA Sample Identification Number
(SIN)

string

stepup_id The STEpUP OA Participant Identification
Number (PIN)

string

harm_knee_pain Binary flag indicating whether experienced pain
is above the Patient Acceptable Symptom State
(PASS) at the time of sampling (calculated
manually from the KOOS pain subscale, the
WOMAC pain subscale or knee VAS (
knee-specific NRS/VAS or painDETECT VAS,
in order of preference). Yes vs No.

{0 = No
(acceptable
pain), 1 = Yes
(unacceptable
pain), NA =
missing or Not
Available.}

harm_pain_prom The specific patient reported outcome measure
used to derive harm_knee_pain.

{1 = KOOS, 2 =
WOMAC, 3 =
Knee specific



VAS/NRS, 4 =
PainDETECT
VAS,
NA=missing}

koos_pain KOOS pain subscore (calculated from full
KOOS questionnaire results, or from combined
subscore provided by cohort collectors, in that
order of preference). Scale of 0-100, where 0 is
the worst possible pain recordable.

float

womac_pain WOMAC pain subscore (calculated from full
WOMAC questionnaire results, or from
combined subscore provided by cohort
collectors, or derived from full KOOS
questionnaire results, in that order of
preference). Scale of 0-100, where 100 is the
worst possible pain recordable.

integer

knee_pain_nrs Patient reported knee pain on a Numeric Rating
Scale (0-10), where 10 is the worst pain
imaginable.

float

pd_pain_average_sco
re

Patient reported average pain score (over the last
4 weeks) from the painDETECT questionnaire.
Scale of 0-10, where 10 is the worst pain
imaginable.

integer

Appendix (4):

Four datasets will be included in the replication data release
● Plate/Bimodal Batch Corrected
● IPS adjusted + Plate/Bimodal Corrected
● Plate/Bimodal/Spinning Batch Corrected
● IPS adjusted + Plate/Bimodal/Spinning Batch Corrected

The release also includes filter files to indicate samples and proteins removed using the filters
described in the QA report. Note that protein concentration data is included in the protein
concentration files for all proteins regardless of filter status. A summary of the number of
samples and proteins removed by each filter is included below:

Filter label in
file

Filter name Description Applies
to

IPS
adjusted
+ Plate/
Bimodal/
Spinning
Batch
Corrected

Plate/
Bimodal/
Spinning
Batch
Corrected

IPS
adjusted +
Plate/
Bimodal
Batch
Corrected

Plate/
Bimodal
Batch
Corrected



NONHUMAN Non-human
proteins

Non-human
or control
proteins

Proteins 307 307 307 307

OA_REPO Reproducibilit
y in OA pool

Predicted R2
< 0.5

Proteins 485 485 485 485

INJ_REPO Reproducibilit
y in injury
pool

Predicted R2
< 0.5

Proteins 252 252 252 252

FREEZETHAW
_CONFOUND

Associated
with number
of freeze-thaw
cycles

ANOVA p <
0.05/7289
(conditional
on cohort)

Proteins 254 60 212 56

SAMPLEAGE_
CONFOUND

Associated
with sample
age

ANOVA p <
0.05/7289
(conditional
on cohort)

Proteins 169 97 229 77

BIMODAL_
CONFOUND

Associated
with bimodal
signal

ANOVA p <
0.05/7289

Proteins 359 348 72 96

SPINNING_
CONFOUND

Associated
with sample
spinning status

p < 0.05
Pearson
correlation
test on 18
paired
spun/unspun
samples

proteins 844 844 0 0

SOMASCAN_
FAIL

SomaLogic
inhouse QC

Hybridization
Scale Factor
> 2.5

Samples 1 1 1 1

LOD_SAMPLE Limit of
detection

25% of
proteins
below/above
limit of
detection

Samples 3 3 3 3

TOTPROT_
OUTLIER

Total protein
outliers

>5SDs from
mean

Samples 4 4 4 4

PCA_OUTLIER PCA outliers >5SD from
combined
centre on top
PCs

Samples 7 7 7 7

Total
remaining

Proteins
Samples

5404/7596
690/701

5626/7596
690/701

6290/7596
690/701

6558/7596
690/701


